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Preface

This volume presents the recent developments of the growing area of research
taking place at the interface of argumentation theory and multiagent systems.
Argumentation can be abstractly defined as the interaction of different argu-
ments for and against some conclusion. Over the last few years, argumentation
has been gaining increasing importance in multiagent systems, mainly as a ve-
hicle for facilitating “rational interaction” (i.e., interaction which involves the
giving and receiving of reasons). This is because argumentation provides tools for
designing, implementing and analyzing sophisticated forms of interaction among
rational agents. Argumentation has made solid contributions to the practice of
multiagent dialogues. Application domains include: legal disputes, business ne-
gotiation, labor disputes, team formation, scientific inquiry, deliberative democ-
racy, ontology reconciliation, risk analysis, scheduling, and logistics. A single
agent may also use argumentation techniques to perform its individual reason-
ing because it needs to make decisions under complex preferences policies, in a
highly dynamic environment.

Following the success of its two first editions, the International Workshop
on Argumentation in Multiagent Systems (ArgMAS 2006) took place for the
third time in May 2006 in Hakodate, Japan, as a satellite workshop of the Au-
tonomous Agents and Multiagent Systems conference. The workshop series is
concerned with the use of the concepts, theories, methodologies, and computa-
tional models of argumentation in building autonomous agents and multiagent
systems. In particular, the workshop aims at bridging the gap between the vast
amount of work on argumentation theory and the practical needs of multiagent
systems research. While the revised contributions of ArgMAS 2006 indeed con-
stitute the backbone of this volume, it also includes revised versions of papers
presented in recent conferences: Autonomous Agents and Multiagent Systems
(AAMAS 2006), and the European Conference on Artificial Intelligence (ECAI
2006). These additional contributions were selected on the basis of their sci-
entific quality and relevance to the topics emphasized here. Our objective has
been to offer a comprehensive and up-to-date overview of this rapidly evolving
landscape, as we did in the previous volumes of this series (LNAI 3366, LNAI
4049).

This book opens with a brief survey paper (“Argumentation in Multiagent
Systems: Context and Recent Developments”) by the editors, which aims at
presenting the broad framework of the volume. Light is shed more specifically
on a couple of “hot topics.”

The rest of the book is then divided into two parts. The first one is dedicated
to the exploration of the fundamentals and possible (and desirable in agent
systems) extensions of argumentation-based reasoning (“Foundations and Ex-
plorations”). For instance, most argumentation frameworks do not really cater
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for the dynamic aspects of multiagent systems since they assume fixed knowl-
edge bases to start with. Two papers of this volume specifically address this
issue. Fukumoto and Sawamura investigate how argumentation may result in a
modification of agents’ beliefs. They tackle this problem by introducing a new
learning method based on argumentation, developed in line with the logic pro-
gramming paradigm, but necessitating different extensions. In the context of
argumentation-based joint deliberation, Ontañón and Plaza study how learn-
ing agents can make use of past examples to generate arguments and counter-
arguments as to what course of action should be taken in a given situation. Using
a specific bilateral protocol, they show that the overall performance of the sys-
tem is improved because joint predictions resulting from this process are typically
more accurate than individual agent prediction. One other well-known limita-
tion of Dung’s original abstract framework is that it does not allow for coalitions
of arguments to attack other arguments. Nielsen and Parsons explore which se-
mantics can be defined when such a possibility is taken into account. While
all the aforementioned papers are concerned with epistemic reasoning, Rahwan
and Amgoud present an approach that puts together the different pieces of an
argumentation-based agent. Indeed, different argumentation frameworks can be
integrated to manage not only beliefs, but also desires and plans intended to
achieve these desires. This capacity to reason on the basis of different attitudes
is a crucial component of autonomous deliberative agents, as witnessed and ar-
gued by BDI-like agenthood theories. Finally, Harvey, Chang and Ghose show
how argumentation can be used to enhance some aspects of distributed constraint
satisfaction algorithms. Agents (variables) argue about partial assignments (of
variables), by exhibiting counter-examples and making counter-proposals. The
technique proposed in this paper makes it possible to resolve the problem of
cycles without relying on a total ordering of the agents. In the last paper of
this part of the volume, Karunatillake and colleagues present an empirical study
of the use of argumentation-based negotiation as a means to manage conflict
involving “social influences” in societies of agents. This kind of conflict will typi-
cally occur in environments where not all roles and relationships (and obligations
attached to them) can be assumed to be known in advance. They show that, in
this context of study, argumentation-based interaction is an improvement both
in terms of efficiency and effectiveness over non-argumentative approaches.

The second part of the book is dedicated to a more specific but highly chal-
lenging question (as witnessed by the number of contributions related to that
topic during the workshop): how should agents select arguments when engaged
in complex interactions (“Strategic Issues”)? Amgoud and Hameurlain regard
the strategy problem as a two-step decision process: first select the prefered
speech act, then select the best content to instantiate this speech act. What is
shown in this paper is that these two steps involve different types of beliefs and
goals. As a consequence, the formal framework for defining strategies is com-
posed of two different systems, both grounded on argumentation theory. One
especially important parameter of the resulting decision problems is provided
by agents’ generic profiles (e.g., cautious or adventurous), that is, attitudes re-
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garding argument-based comparison of candidate decisions. Mbarki, Bentahar,
and Moulin make a slightly different distinction: they distinguish (dynamic)
strategies (which involves global planning of an agent communication, in terms
of sub-goals to be achieved), and tactics (which amounts to selecting the best
argument with respect to the selected strategy). Each tactic is attached to a sub-
goal selected at the strategy level. This articulation, often overlooked by other
approaches, is at the core of the formal framework they propose. Oren, Norman,
and Preece investigate two specific heuristics for dialogue move selection: one
simply consists in revealing as little information as necessary in a given context;
the second one involves a more sophisticated computation to assess the utility
cost induced by revealing a given piece of information. Such heuristics make
sense in particular in domains where privacy concerns are important, hence the
need to understand more precisely how they can affect dialogue outcomes. An-
other interesting specific negotiation strategy is explored by Ramchurn et al.
in the context of repeated interactions (that is, when agents typically interact
more than once). Here, arguments are seen as promises of rewards in future
interactions. Their strategy, which is based on a reward generation algorithm,
achieves better outcomes than standard negotiation algorithms. On a slightly
different tone, in the last paper of this book, Pasquier and colleagues develop
an approach which accounts for the generative aspects of argumentative com-
munication. Departing from the mainstream dialectical line of research, they
ground their proposal on the notion of cognitive coherence, a theory coming
from behavioral cognitive science.

We conclude this preface by extending our gratitude to the members of the
Steering Committee, members of the Program Committee, and the auxiliary
reviewers, who together helped make the ArgMAS workshop a success. We also
thank the authors for their enthusiasm in submitting papers to the workshop,
and for revising their papers on time for inclusion in this book.

May 2007 Nicolas Maudet
Simon Parsons

Iyad Rahwan



Organization

Program Chairs

Nicolas Maudet Université Paris-Dauphine, France
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Pavlos Moraitis Université René Descartes-Paris 5, France
Simon Parsons City University of New York, USA
Iyad Rahwan British University in Dubai, UAE

(Fellow) University of Edinburgh, UK
Chris Reed University of Dundee, UK

Program Committee

Leila Amgoud IRIT, Toulouse, France
Katie Atkinson University of Liverpool, UK
Jamal Bentahar Laval University, Canada
Carlos Chesnevar Universitat de Lleida, Spain
Frank Dignum Utrecht University, The Netherlands
Rogier van Eijk Utrecht University, The Netherlands
Anthony Hunter University College London, UK
Antonis Kakas University of Cyprus, Cyprus
Nikos Karacapilidis University of Patras, Greece
Nicolas Maudet Université Paris-Dauphine, France
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Paris 75775 Cedex 16, France
maudet@lamsade.dauphine.fr

2 Department of Computer and Information Science, Brooklyn College
City University of New York, 2900 Bedford Avenue, Brooklyn, 11210 NY, USA

parsons@sci.brooklyn.cuny.edu
3 Institute of Informatics, The British University in Dubai

P.O.Box 502216, Dubai, UAE
(Fellow) School of Informatics, University of Edinburgh, UK

irahwan@acm.org

Abstract. This chapter provides a brief survey of argumentation in
multi-agent systems. It is not only brief, but rather idiosyncratic, and
focuses on the areas of research that most interest the authors, and those
which seem to be the most active at the time of writing.

1 Introduction

The theory of argumentation [81] is a rich, interdisciplinary area of research
lying across philosophy, communication studies, linguistics, and psychology. Its
techniques and results have found a wide range of applications in both the-
oretical and practical branches of artificial intelligence and computer science
[14,74]. These applications range from specifying semantics for logic programs
[20], to natural language text generation [21], to supporting legal reasoning [9],
to decision-support for multi-party human decision-making [31] and conflict res-
olution [80].

In recent years, argumentation theory has been gaining increasing interest in
themulti-agent systems (MAS) research community.Onone hand, argumentation-
based techniques can be used to specify autonomous agent reasoning, such as be-
lief revision and decision-making under uncertainty and non-standard preference
policies. On the other hand, argumentation can also be used as a vehicle for facili-
tating multi-agent interaction, because argumentation naturally provides tools for
designing, implementing and analysing sophisticated forms of interaction among
rational agents. Argumentation has made solid contributions to the theory and
practice of multi-agent dialogues.

In this short survey, we review the most significant and recent advances in the
field, with no intention of being exhaustive. Thus, we ignore recent work that
extends the basic mechanisms of argumentation with new semantics [12], bipolar
arguments [13], and the ability to handle sets of arguments [49]. Indeed, we have

N. Maudet, S. Parsons, and I. Rahwan (Eds.): ArgMAS 2006, LNAI 4766, pp. 1–16, 2007.
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2 N. Maudet, S. Parsons, and I. Rahwan

very little to say about how to argue and, instead, deal with what one can argue
about, dealing with the uses of argumentation rather than the mechanisms by
which it may be carried out1, and restricting even that view to coincide with
the topics of the other papers in this volume. In particular, this chapter first
recalls some of the key notions in argumentation theory, and then outlines work
on two major applications of argumentation in multi-agent systems, namely in
the reasoning carried out by autonomous agents (Section 3) and in multi-agent
communication (Section 4).

2 What Is Argumentation Good for?

According to a recent authoritative reference on argumentation theory, argu-
mentation can be defined as follows:

Argumentation is a verbal and social activity of reason aimed at increas-
ing (or decreasing) the acceptability of a controversial standpoint for the
listener or reader, by putting forward a constellation of propositions in-
tended to justify (or refute) the standpoint before a rational judge. [81,
page 5]

Let us decompose the elements of this definition that are most relevant to our dis-
cussion. First, the ultimate goal of argumentation is to resolve a “controversial”
standpoint; controversial in the sense that it is subject to both “justification”
or “refutation” depending on the information available. This distinguishes ar-
gumentation from the classical deductive reasoning viewpoint, in which proofs
for propositions cannot be contested. Moreover, the nature of the “standpoint”
can vary. While the classical study of argumentation has focused mainly on
propositional standpoints — i.e. things that are believed or known — there is
no reason why the standpoint is confined to be propositional. A standpoint can,
in principle, range from a proposition to believe, to a goal to try to achieve, to
a value to try to promote. That is, argumentation can be used for theoretical
reasoning (about what to believe) as well as practical reasoning (about what
to do).

Secondly, argumentation is an “activity of reason”, emphasising that a par-
ticular process is to be followed in order to influence the acceptability of the
controversial standpoint. This activity and the propositions put forward are to
be evaluated by a “rational judge”: a system that defines the reasonableness of
these propositions according to some criteria. An important objective of argu-
mentation theory is to identify such system of criteria.

In summary, argumentation can be seen as the principled interaction of dif-
ferent, potentially conflicting arguments, for the sake of arriving at a consistent
conclusion. Perhaps the most crucial aspect of argumentation is the interaction
between arguments. Argumentation can give us means for allowing an agent to

1 Not least because one can potentially make use of any mechanism for argumentation
in the service of any of the applications of argumentation.
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reconcile conflicting information within itself, for reconciling its informational
state with new perceptions from the environment, and for reconciling conflicting
information between multiple agents through communication. It is for these rea-
sons that argumentation has begun to receive great interest in the multi-agent
systems community. In particular, argumentation lends itself naturally to two
main sorts of problems encountered in MAS:

– Forming and revising beliefs and decisions: Argumentation provides
means for forming beliefs and decisions on the basis of incomplete, conflicting
or uncertain information. This is because argumentation provides a system-
atic means for resolving conflicts among different arguments and arriving at
consistent, well-supported standpoints;

– Rational interaction: Argumentation provides means for structuring dia-
logue between participants that have potentially conflicting viewpoints. In
particular, argumentation provides a framework for ensuring that interaction
respects certain principles (e.g. consistency of each participant’s statements).

In the next sections, we will discuss these applications in more detail and refer to
some relevant literature. In particular, Section 3 deals with the topics of revising
beliefs and making decisions, aspects that we can think of as being the concern of
individual autonomous agents, while Section 4 deals with topics related to inter-
agent communication and rational action, all aspects of argumentation that are
decidedly multi-agent.

3 Argumentation for Reasoning in Autonomous Agents

Argumentation is a general process for reasoning. An autonomous agent that
has to reason about could weigh arguments for and against different options in
order to arrive at a well-supported stance. In this section, we discuss two main
applications of argumentation to autonomous agent reasoning.

3.1 Argumentation for Belief Revision

One of the main challenges in specifying autonomous agents is the maintenance
and updating of its beliefs in a dynamic environment. An agent may receive
perceptual information that is inconsistent with its view of the world, in which
case the agent needs to update its beliefs in order to maintain consistency. The
major challenge of nonmonotonic reasoning formalisms [11] is to specify efficient
ways to update beliefs. At the normative level, the AGM paradigm [29] specifies
the rationality postulates that must be satisfied by an idealistic process of belief
revision. On the operational level, formalisms for mechanising nonmonotonic
reasoning include truth maintenance systems (TMS) [19], default logic [75] and
circumscription [48].

Argumentation provides an alternative way to mechanise nonmonotonic
reasoning. Argument-based frameworks view the problem of nonmonotonic rea-
soning as a process in which arguments for and against certain conclusions
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are constructed and compared. Nonmonotonicity arises from the fact that new
premises may enable the construction of new arguments to support new beliefs,
or stronger counterarguments against existing beliefs. As the number of premises
grows, the set of arguments that can be constructed from those premises grows
monotonically. However, because new arguments may overturn existing beliefs,
the set of beliefs is nonmonotonic. Various argument-based frameworks for non-
monotonic reasoning have been proposed in the last 20 or so years. Some of the
most notable are the following [42,60,79,41,22,27,67]2.

While the above-mentioned frameworks have developed into a solid and ma-
ture sub-field of AI, their incorporation into situated autonomous agent reasoning
remains an opportunity to be pursued. In order to do so, an adequate represen-
tation of the environment is needed, and a mechanism for integrating perceptual
information into the belief-update mechanism is also required. Moreover, situ-
ated agents are required to update their beliefs in a timely fashion in order to
take appropriate action accordingly.

3.2 Argumentation for Deliberation and Means-Ends Reasoning

An autonomous agent does not only maintain a mental picture of its environ-
ment. The agent is faced with two additional tasks: the task of deliberation in
which it decides what state of the world it wishes to achieve — namely its goal
— and the task of means-ends reasoning in which it forms a plan to achieve this
goal. Argumentation is also potentially useful for tackling both these challenges.

Recently, argumentation has been applied to deliberation. For example, ar-
gumentation has been used as a means for choosing among a set of conflicting
desires [1] and as a means for choosing between goals [3]. Another argument-
based framework for deliberation has been presented by Kakas and Moraitis [39].
In this approach, arguments and preferences among them are used in order to
generate goals based on a changing context. In addition, argumentation can be
used to support standard BDI [73] models, as in [56].

More generally, as shown by Fox in his work since [26]3, argumentation pro-
vides a framework for making decisions. Just as one makes arguments and counter-
arguments for beliefs, one can make arguments and counter-arguments for actions.
While such a framework sounds as though it must be at odds with approaches
based on decision theory [34], Fox and Parsons [28] provide an argumentation
framework that reconciles the two approaches. In this system, argumentation is
used to reason about the expected value of possible actions. In particular, one ar-
gument system is used to arrive at a stance on beliefs, while another argument
system identifies the outcomes of possible actions. Together, arguments over be-
liefs and the results of actions can be combined to create arguments about the
expected value of possible actions. This approach was later refined in [53].

2 For comprehensive surveys on argument-based approaches to nonmonotonic reason-
ing, see [14,68].

3 Though this line of work, summarised in [52], did not explicitly use the term “argu-
mentation” until [27], with hindsight it is clear that argumentation is exactly what
Fox and his colleagues were using.
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Argumentation has also been used in planning. One of the earliest works
on argument-based planning is perhaps George Ferguson’s thesis [23], which
uses argumentation as a means of allowing several participants to collaborate
on the creation of a plan — plans are presented as arguments that a given
course of action will result in a goal being achieved. Around the same time,
John Pollock’s was extending his OSCAR system to deal with the notion of de-
feat among plans [61]. More recently, several researchers have considered using
argument-based approaches to generate plans [3,36,78]. However, such frame-
works currently generate relatively simple plans in comparison with algorithms
found in the mainstream planning literature [30]. One important question worth
exploring is whether argumentation will offer real advances over existing plan-
ning algorithms.

4 Argumentation for Agent Communication

An inherent, almost defining, characteristic of multi-agent systems is that agents
need to communicate in order to achieve their individual or collective aims. Ar-
gumentation theory has been an inspiration for studying and formalising various
aspects of agent communication. Enhancing agent communication with argumen-
tation allows agents to exchange arguments, to justify their stance, to provide
reasons that defend their claims. This improved expressivity has many potential
benefits, but it is often claimed that it should in particular:

– make communication more efficient by allowing agents to reveal relevant
pieces of information when it is required during a conversation;

– allow for a verifiable semantics based on the agents’ ability to justify their
claims (and not on private mental states); and

– make protocols more flexible, by replacing traditional protocol-based regu-
lation by more sophisticated mechanics based on commitments.

On the other hand, this improved expressivity comes with a price: it poses some
serious challenges when it comes to designing autonomous agents that actually
communicate by means of arguments, and makes more difficult:

– the integration with agents’ reasoning, which requires to precisely specify
what agents should respond to others’ agents on the basis of their internal
state, but also on the basis of their goal (strategy);

– the validation of provable desirable properties of these protocols;
– the communication between potentially heterogeneous agents, which should

now share an argument interagent format.

We now critically discuss some of the points listed above, by questioning whether
these hopes have been justified, and whether the aforementioned difficulties have
seen some significant advances in recent years.
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4.1 Efficiency of Argumentation

Until rather recently it was often claimed that argumentation could make com-
munication more efficient, by allowing agents to reveal relevant pieces of infor-
mation when it is needed during a conversation. Although the idea is intuitively
appealing, there was little evidence to confirm this though. Indeed, argumenta-
tion may also involve both computational and communication overload, hence
compensating the potential benefits induced by the exchange of reasons justify-
ing agents’ stances regarding an issue.

Perhaps the pioneering work in this area is that of Jung et al. [37,38]: in
the context of a (real world) applications modeled as distributed constraint-
satisfaction problems (e.g. a distributed sensor domain), they study whether the
overhead of argumentation is justified by comparing various strategies. In the
first edition of the ArgMAS workshop series, Karunatillake and Jennings [40] ask
the question directly: “Is it worth arguing?”. In the context of a task-allocation
problem, they investigated how argumentative strategies compare to alterna-
tive means of resolving conflicts (evading, or re-planning). More recently, the
efficiency of argument-based communication has been explored in the different
context of a crisis situation involving agents trying to escape a burning building
[10]. If agents make uncertain hypotheses regarding the origin of the fire, when
should they waste time in trying to convince their partners? In this volume,
Ontañón and Plaza [50] experimentally examine how argumentation can make
multiagent learning more efficient.

Without entering in the details of these experimental results, it is interesting
to note that the efficiency of argumentation is very much dependent of the con-
text, and that there can be no straightforward answer to the question “Is it worth
arguing?”. For instance, Karunatillake and Jennings show that argumentation
turns out to be effective when the the number of resources involved in the task
allocation problem remains rather limited. Similarly, Bourgne et al. [10] observe
that argumentation is especially required in those situations where buildings are
rather “open” (when there are fewer walls). This can be explained by the fact
that there are more potential candidate hypotheses to the fire origin then, hence
the need to exchange arguments to discriminate between those. In their multi-
agent learning experiment [50], Ontañón and Plaza emphasize in particular the
influence of the amount of data that agents can individually access: as expected,
argumentation is more beneficial when agents have only limited access to data.

While these papers try to investigate mostly experimentally in what circum-
stances argumentation can be an efficient conflict resolution technique; there are
more theoretical contributions to this issue. A recent paper by Rahwan et al.
[70] makes a first effort in this direction. In particular, the authors investigate
a simple argumentation-based negotiation protocol in which agents exchange
information about their underlying goals. It is shown that under certain condi-
tions, exchanging such information enables agents to discover mutual goals and
thus increases the likelihood of reaching deals. Other related work is that of [57]
which shows how the beliefs of two agents that engage in argumentation-based
dialogue will converge over time.
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4.2 Flexibility of Communication

One of the most formally precise ways of studying different types of dialogues is
through dialogue-games. Dialogue-games are interactions between two or more
players, where each player makes a move by making some utterance in a common
communication language, and according to some pre-defined rules. Dialogue-
games have their roots in the philosophy of argumentation [7] and were used as
a tool for analysing fallacious arguments [32]. Such games have been used by
Walton and Krabbe themselves to study fallacies in persuasion dialogues.

Recently, dialogue-games have become influential in AI and MAS, mainly as
a means for specifying protocols [44]. A dialogue-game protocol is defined in
terms of a set of locutions, as well as different types of rules: commencement
rules, combination rules, commitment rules and termination rules [46]. Com-
mencement and termination rules specify when a dialogue commences and how
it terminates. Commitment rules specify how the contents of commitment stores
change as a result of different locutions. Finally, combination rules specify the
legal sequences of dialogue moves.

In AI and MAS, formal dialogue-game protocols have been presented for dif-
ferent atomic dialogue types in the typology of Walton and Krabbe described
above. These include persuasion dialogues [5], inquiry dialogues [35], negotiation
[47,77], and deliberation [33]. Other types of dialogues based on combinations
of such atomic dialogues have also been proposed, including team formation di-
alogues [17], dialogues for reaching collective intentions [18], and dialogues for
interest-based negotiation [69].

Dialogue-game protocols offer a number of advantages. Mainly, they offer
an intuitive approach to defining protocols and naturally lend themselves to
argumentation-theoretic analysis, e.g. of dialogue embedding, commitments and
fallacies. It is then feasible to define protocols that would otherwise be difficult to
specify in practice, were we to use a different means of representation, for instance
finite state machines (although their expressive power may not be higher in the-
ory [24]). In practice, dialogue-games seem to offer a good compromise between
the strict rule-governed nature of many implemented agent systems (economic
auction mechanisms [84] being a good example) and the greater expressiveness
envisioned by generic agent communication languages such as FIPA-ACL [25]
(see [46]).

Now finding the good degree of flexibility is a difficult exercise. Designing the
rules of a protocol amounts to specify what counts as a legal conversation be-
tween agents involved in a given interaction. Of course, the objective is to reduce
the autonomy of agents in order to be able to prove interesting properties (see
below), but at the time to allow agents to exchange arguments in a way that
is deemed “natural” and flexible. For instance, the traditional proof-theoretical
concept that takes the form of a dialectical dialogue between a proponent and
an opponent can hardly be regarded as flexible: agents are highly constrained in
their possible responses, with no possibly, for instance, to get back to a previ-
ous claim and explore alternative replies. In some circumstances (as was already



8 N. Maudet, S. Parsons, and I. Rahwan

argued in [43]), it can be appropriate to leave agents explore the space of possible
alternatives more widely. The work of Prakken has certainly been pioneering
in this respect, in trying to articulate both the necessity of flexible protocols
with concrete mechanisms while still maintaining their coherence [62,63,64]. The
notion of relevance has been put forward as a central notion by Prakken: in
very broad terms, moves are deemed legal when they respond to some previous
move of the dialogue and are relevant, in the sense that they modify the current
winning position of the dialogue.

4.3 Integration of Argumentation and Reasoning

We have seen that argumentation can serve both as a framework for implement-
ing autonomous agent reasoning (e.g. about beliefs and actions) and as a means
to structure communication among agents. As a result, argumentation can natu-
rally provide a means for integrating communication with reasoning in a unified
framework.

To illustrate the above point, consider the following popular example by Par-
sons et al. [56]. The example concerns two home-improvement agents — agent
A1 trying to hang a painting, and another A2 trying to hang a mirror. A1 pos-
sesses a screw, a screw driver and a hammer, but needs a nail in addition to
the hammer to hang the painting. On the other hand, A2 possesses a nail, and
believes that to hang the mirror, it needs a hammer in addition to the nail. Now,
consider the following dialogue (described here in natural language) between the
two agents:

A1: Can you please give me a nail?
A2: Sorry, I need it for hanging a mirror.
A1: But you can use a screw and a screw driver to hang the mirror! And if you

ask me, I can provide you with these.
A2: Really? I guess in that case, I do not need the nail. Here you go.
A1: Thanks.

At first, A2 was not willing to give away the nail because it needed it to achieve
its goal. But after finding out the reason for rejection, A1 managed to persuade
A2 to give away the nail by providing an alternative plan for achieving the latter’s
goal.

We can use this example to highlight how argumentation-based techniques
can provide a comprehensive set of features required for communication. Let us
consider these in detail.

1. Reasoning and Planning: Argumentation can be used by each agent to
form its beliefs about the environment, and to generate plans for achieving
their goals. For example, agent A2 can use argument-based deliberation to
arrive at the goal to acquire a nail.

2. Generating Utterances: Argumentation can be used to generate argu-
ments for utterances and arguments. For example, after A1 requests a nail
from A2, the latter builds an argument against giving away the nail by sta-
ting that it needs the nail to achieve one of its own goals (namely, hanging
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the mirror). This information can be used again by A2 to generate a counter-
argument for why A2 does not need the nail.

3. Evaluating incoming communication: Argumentation-based belief revi-
sion can be used to evaluate incoming communication. For example, when
A2 received the argument from A1, it had to evaluate that argument to make
sure it is sensible. A2 would not have accepted A1’s argument if the former
did not believe the latter actually possesses a screw and screw driver.

4. Communication Structuring: The whole dialogue can be structured
through argumentation-based protocols, based on dialogue-games, which
may themselves be based on certain argumentation schemes for reasoning
about resources and plans.

Indeed, the above example, described in a theoretical framework by Parsons et
al. [56], has been fully implemented using an argumentation framework based
on abductive logic programming [77]. Other attempts to integrate reasoning and
communication within a unified argumentation framework have also been made
[6,76,69]. A review of these frameworks and others can be found in [71].

A major inspiration from argumentation theory in MAS is the notion of an
argumentation scheme [83]. These are schemes that capture stereotypical (de-
ductive or non-deductive) patterns of reasoning found in everyday discourse. For
example, Walton specifies twenty five argumentation schemes for common types
of presumptive reasoning. The most useful aspect of argumentation schemes is
that they each have an associated set of critical questions. These critical ques-
tions help identify various arguments that can be presented in relation to a claim
based on the given scheme. Hence, while a scheme can be used to establish a
“stance,” the set of critical questions help build communication structures about
that stance.

Argumentation schemes offer a number of useful features to MAS communi-
cation. Their structure helps reduce the computational cost of argument gener-
ation, since only certain types of propositions need to be established. This very
feature also reduces the cost of evaluating arguments.

A few attempts have been made to utilise the power of argumentation schemes
in AI, mainly in constructing argumentation schemes for legal reasoning [82,66].
In MAS, the paper by Atkinson et al. [8] uses an argumentation scheme for
proposing actions to structure their dialogue-game protocol.

A particularly important issue on the boundary between communication and
internal reasoning is the specification of argumentation dialogue strategies. A
strategy in an argumentation dialogue specifies what utterances to make in or-
der to bring about some desired outcome (e.g. to persuade the counterpart to
perform a particular action). While work on argument evaluation and generation
has received much attention, the strategic use of arguments has received little
attention in the literature. Recently, the effects of a specific set of agent attitudes
on dialogue outcomes have been studied [4,59]. For example, a confident agent
is happy to assert statements for which it has an argument, but a more careful
agent makes assertions only after going through its whole knowledge base and
making sure it has no arguments against it. When it comes to more complex
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dialogue strategies, however, only informal methodologies have been proposed
[69, Chapter 5].

Work on an agent’s strategy overlaps with the notion of relevance that was
mentioned above. In a dialogue, unless it is very constrained, an agent typically
has a choice of possible utterances. How the agent makes the choice is an aspect
of its strategy, and relevance may come into its strategic thought. For example,
as Oren et al. consider [51], an agent may be wise to avoid saying anything that
is essential to the case it is making, for fear that it may be used against it at a
later point4. Oren et al. use a notion of what is relevant, similar to that used by
Prakken, to establish what an agent might sensibly say, and Bentahar et al. [45]
make use of a related notion (though one that is subtly different, as discussed
in [54]).

4.4 Properties of Protocols

Along with the growing number of dialogue protocols that have been suggested
by various researchers comes the need to understand the properties of such pro-
tocols. Without this knowledge we have no basis for choosing between them, or
even assessing whether they are adequate for a given purpose. Clearly it is pos-
sible, as in, to examine specific individual protocols and determine, for example,
whether the dialogues that they enable will terminate [59], and what the possible
outcomes of those dialogues are [58]. One severe difficulty with this, nevertheless,
lies in the fact that it requires to make assumptions regarding agents’ attitudes
towards the treatment of arguments, as detailed below. It is not the place here to
enter into the details of such properties for specific interaction contexts, but we
refer the reader to the recent survey by Henry Prakken on persuasion dialogues
[65]. As for argument-based negotiation, we mention the very recent work by
Amgoud and colleagues [2], which studies the properties of a (monotonic) bar-
gaining protocol where agents only make concessions when they cannot defend
their position any longer. This is an interesting attempt to formally extend the
kind of results that are usually obtained in the context of such bilateral protocols
(in particular regarding the optimality of the compromise) to a context where
some sort of argumentation is permitted.

To conclude on these aspects, we mention two recent developments in this area
that, we believe, pave the way for some potentially more foundational progresses
in the near future.

– Firstly, the methodology adopted so far seems a rather unsatisfactory ap-
proach — it requires considerable theoretical work to be performed in order
to understand any new protocol. Much more use would be to have a meta-
theory of protocols which would identify the properties of a large class of
protocols. Some tentative steps towards such a meta-theory are reported
in [55].

4 [51] draws its title from the slogan, used in Britain during the Second World War,
that “Loose lips sink ships” — a warning not to inadvertantly give away information
that might seem worthless but could prove fatal.
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– Secondly, in order to assess the quality of (or bias induced by) a protocol,
it is important to distinguish what is inherent to the problem itself; and
what can really be imputed to the protocol. It is then very useful to be
able to compare this protocol against an idealized situation where a fully-
informed third-party would centrally compute the outcome (note that the
bias induced may be interpreted as a quality loss, but can also sometimes
be sought when viewed as a liberality offered to agents). Hence the need
to be able to compute this centralized outcome. Sometimes this problem
itself is challenging, for instance in a situation where several (potentially
more than two) agents hold argumentation theories involving different sets
of arguments and attack relations. A recent paper [16] explores this problem,
and investigate the merging of several argumentation systems coming from
different agents.

4.5 Argument Interchange Format

One major barrier to the development and practical deployment of argumenta-
tion systems is the lack of a shared, agreed notation for an “interchange for-
mat” for arguments and argumentation. Such a format is necessary if agents
are to be able to exchange argumentative statements in open systems. The re-
cently proposed Argument Interchange Format (AIF) [15] is intended to fill
this gap, providing an approach to the representation and exchange of data be-
tween various argumentation tools and agent-based applications. It represents
a consensus “abstract model” established by researchers across the fields of ar-
gumentation, artificial intelligence and multi-agent systems. The core AIF on-
tology is specified in a way that it can be extended to capture a variety of
argumentation formalisms and schemes. One such extension, in the context of
Semantic Web applications, deals with Walton’s theoretical model of argument
schemes [72].

5 Concluding Remarks

Argumentation theory has been concerned with the study of rational human rea-
soning and dialogue for millennia. It is therefore an ideal resource for techniques,
results and intuitions for problems in multi-agent reasoning and communication,
and it is no surprise that formal models of argumentation are becoming an in-
creasingly popular subject within research on multi-agent systems.

This chapter has presented a brief survey of a section of the work on argu-
mentation in multi-agent systems, a section that encompasses the work that, in
the opinion of the authors, is currently the most interesting of the work in the
field. In short, in our view, the basic tools and methods have been established —
we have well founded argumentation systems, and we have in dialogue games a
means of structuring interactions between agents. What we need to do is to work
with these tools in three directions. First, we need to integrate them into the
reasoning processes of agents. For example, we need to decide how what an agent
knows informs what it chooses to say in an interaction, and, conversely, what is
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said in an interaction informs what an agent knows (some preliminary work on
this later appeared in [57]). Second, we need to understand better how to design
argumentation-based agent interactions so that they achieve the things that we
want — we don’t just need theoretical results that tell us how specific protocols
work, but we need a theory that tells us how all protocols work. Third, we need
to be able to show the effectiveness of argumentation-based agent interactions.
In the end, however attractive the theory, if argumentation-based approaches
are not more effective than other approaches to creating interactions between
agents, then work on them is work wasted. As the paper surveyed above, and
the work described in the contributions to this volume, show, as a communnity
we are taking some steps in these three important directions.
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50. Ontañón, S., Plaza, E.: Arguments and counterexamples in case-based joint de-
liberation. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2007. LNCS
(LNAI), vol. 4766, Springer, Heidelberg, Germany (2007)

51. Oren, N., Norman, T.J., Preece, A.: Loose lips sink ships: A heuristic for argu-
mentation. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2007. LNCS
(LNAI), vol. 4766, Springer, Heidelberg, Germany (2007)

52. Parsons, S., Fox, J.: Argumentation and decision making: A position paper. In:
Gabbay, D.M., Ohlbach, H.J. (eds.) FAPR 1996. LNCS, vol. 1085, pp. 705–709.
Springer, Heidelberg (1996)

53. Parsons, S., Green, S.: Argumentation and qualitative decision making. In: Hunter,
A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 328–339.
Springer, Heidelberg (1999)

54. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: On the relevance of utter-
ances in formal inter-agent dialogues. In: AAMAS-2007, Honolulu, HI (May 2007)

55. Parsons, S., McBurney, P., Wooldridge, M.: Some preliminary steps towards a
meta-theory for formal inter-agent dialogues. In: Rahwan, I., Moräıtis, P., Reed,
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Abstract. Computational argumentation has been accepted as a social
computing mechanism or paradigm in the multi-agent systems commu-
nity. In this paper, we are further concerned with what agents believe
after argumentation, such as how agents should accommodate justified
arguments into their knowledge bases after argumentation, what and how
agents acquire or learn, based on the results of argumentation. This is an
attempt to create a new learning method induced by argumentation that
we call Argument-Based Learning (ABL). To this end, we use our logic
of multiple-valued argumentation LMA built on top of Extended Anno-
tated Logic Programming EALP, and propose three basic definitions to
capture agents’ beliefs that should be rationally acquired after argumen-
tation: knowledge acquisition induced by the undercut of assumptions,
knowledge acquisition induced by difference of recognition, and knowl-
edge acquisition induced by rebut. They are derived from two distinctive
and advantageous apparatuses of our approach to multi-valued argu-
mentation under : Paraconsistency and multiple-valuedness that EALP
and LMA feature. We describe an overall argument example to show
the effectiveness and usefulness of the agent learning methods based on
argumentation.

1 Introduction

In the last years, argumentation has been accepted as a promising social com-
puting mechanism or paradigm in the multi-agent systems community. It has
proven to be particularly suitable for dealing with reasoning under incomplete
or contradictory information in a dynamically changing and networked distrib-
uted environment. The main concern, however, has lain in characterizing a set of
acceptable (justified) arguments just as ordinary logics are concerned with char-
acterizing validity and provability [3] [12]. In our view, there is one important
missing angle in the past works on argumentation, which we should promote
one more step further. It is such a view point that our objectives of making
arguments or dialogue are not only for reaching to agreements, understanding
with our social partners, and making decisions, but also for learning or acquir-
ing information unknown or valuable to us. In this paper, we are concerned with
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how agents should accommodate those justified arguments into their knowledge
bases after argumentation, or what and how agents acquire or learn, based on
the results of argumentation, just as we know each other, learn a lot and grow,
through argumentation or dialogue in the daily, business or academic life. This
paper describes a first step towards learning and growing or evolving agents
through argumentation. To this end, we take a logic programming approach to
argumentation since it can provide agents with both knowledge representation
language and reasoning procedure in an integrated framework as well as in a
computationally feasible way. We address ourselves to our purpose stated above
in our Extended Annotated Logic Programming EALP and Logic of Multiple-
Valued Argumentation LMA. EALP is an underlying knowledge representation
language to which we extended GAP [7] for argumentation under uncertainty.
It is very general and expressive as well as computationally feasible, allowing to
deal with diverse types of truth values for various kinds of uncertain information.
LMA is an argumentation framework on top of EALP, enabling agents to argue
under their own knowledge bases with uncertainty [14]. We here emphasize that
the most distinctive and advantageous point of our approach to argument-based
learning (ABL) is to employ EALP and LMA with paraconsistency. As the re-
sult, we can be completely emancipated from the fear of inconsistency of knowl-
edge bases and can concentrate on learning or knowledge acquisition itself in a
manner more fused with argumentation, differently from the other approaches
[1] [2] [6]. Furthermore, the multiple-valuedness that EALP and LMA feature
brings us more refined knowledge acquisition methods than those of two-valued
cases[1] [2] [6]. The paper is organized as follows. In Section 2 and 3, we outline
Extended Annotated Logic Programming EALP and Logic of Multiple-valued
Argumentation LMA respectively, to make the paper self-contained. In Section
4, we propose three definitions for learning or knowledge acquisition that is to be
accomplished after argumentation. In Section 5, we illustrate two overall learning
scenarios based on both argumentation and knowledge acquisition. In particu-
lar, we discuss a dynamically changing argument in which agents are involved
in not only a single argument at a time but a process of consecutive arguments
over time, and agents gradually become wiser through repeated argumentation.
In Section 6, we briefly describe some related works although there is nothing
for us to be able to directly compare with ours. The final section summarizes
contributions of the paper, and future work.

2 Overview of EALP

EALP is an underlying knowledge representation language that we formalized for
our logic of multiple-valued argumentation LMA. EALP has two kinds of explicit
negation: Epistemic Explicit Negation ‘¬’ and Ontological Explicit Negation ‘∼’,
and the default negation ‘not’. They are supposed to yield a momentum or
driving force for argumentation or dialogue in LMA. We here outline EALP.
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2.1 Language

Definition 1 (Annotation and annotated atoms[7]). We assume a com-
plete lattice (T , ≤) of truth values, and denote its least and greatest element by
⊥ and � respectively. The least upper bound operator is denoted by �. An anno-
tation is either an element of T (constant annotation), an annotation variable
on T , or an annotation term. Annotation term is defined recursively as follows:
an element of T and annotation variable are annotation terms. In addition, if
t1, . . . , tn are annotation terms, then f(t1, . . . , tn) is an annotation term. Here,
f is a total continuous function of type T n → T . If A is an atomic formula and
μ is an annotation, then A :μ is an annotated atom. We assume an annotation
function ¬ : T → T , and define that ¬(A : μ) = A : (¬μ). ¬A : μ is called the
epistemic explicit negation(e-explicit negation) of A : μ.

Definition 2 (Annotated literals). Let A : μ be an annotated atom. Then
∼ (A : μ) is the ontological explicit negation (o-explicit negation) of A : μ. An
annotated objective literal is either ∼ A : μ or A : μ. The symbol ∼ is also used to
denote complementary annotated objective literals. Thus ∼∼ A :μ = A :μ. If L is
an annotated objective literal, then notL is a default negation of L, and called an
annotated default literal. An annotated literal is either of the form notL or L.

Definition 3 (Extended Annotated Logic Programs (EALP)). An ex-
tended annotated logic program (EALP ) is a set of annotated rules of the form:
H ← L1 & . . . & Ln, where H is an annotated objective literal, and Li (1 ≤ i ≤
n) are annotated literals in which the annotation is either a constant annotation
or an annotation variable.

For simplicity, we assume that a rule with annotation variables or objective
variables represents every ground instance of it. In this assumption, we restrict
ourselves to constant annotations in this paper since every annotation term in
the rules can evaluate to the elements of T . We identify a distributed EALP
with an agent, and treat a set of EALPs as a multi-agent system.

2.2 Interpretation

Definition 4 (Extended annotated Herbrand base). The set of all an-
notated literals constructed from an EALP P on a complete lattice T of truth
values is called the extended annotated Herbrand base HTP .

Definition 5 (Interpretation). Let T be a complete lattice of truth values, and
P be an EALP. Then, the interpretation on P is the subset I ⊆ HTP of the extended
annotated Herbrand base HTP of P such that for any annotated atom A,

1. If A :μ ∈ I and ρ ≤ μ, then A :ρ ∈ I (downward heredity);
2. If A :μ ∈ I and A :ρ ∈ I, then A : (μ � ρ) ∈ I (tolerance of difference);
3. If ∼ A :μ ∈ I and ρ ≥ μ, then ∼ A :ρ ∈ I (upward heredity).
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The conditions 1 and 2 of Definition 5 reflect the definition of the ideal of a
complete lattice of truth values. The ideals-based semantics was first introduced
for the interpretation of GAP by Kifer and Subrahmanian [7]. Our EALP for
argumentation also employs this since it was shown that the general semantics
with ideals is more adequate than the restricted one simply with a complete lat-
tice of truth values [14]. We define three notions of inconsistencies corresponding
to three concepts of negation in EALP.

Definition 6 (Inconsistency). Let I be an interpretation. Then,

1. A :μ ∈ I and ¬A :μ ∈ I ⇔ I is epistemologically inconsistent (e-inconsistent).
2. A :μ ∈ I and ∼ A :μ ∈ I ⇔ I is ontologically inconsistent (o-inconsistent).
3. A : μ ∈ I and notA : μ ∈ I, or ∼ A : μ ∈ I and not ∼ A : μ ∈ I ⇔ I is

inconsistent in default (d-inconsistent).

When an interpretation I is o-inconsistent or d-inconsistent, we simply say I is
inconsistent. We do not see the e-inconsistency as a problematic inconsistency
since by the condition 2 of Definition 5, A :μ ∈ I and ¬A :μ = A :¬μ ∈ I imply
A : (μ�¬μ) ∈ I and we think A :μ and ¬A :μ are an acceptable differential. Let I
be an interpretation such that ∼ A :μ ∈ I. By the condition 1 of Definition 5, for
any ρ such that ρ ≥ μ, if A :ρ ∈ I then I is o-inconsistent. In other words, ∼ A :μ
rejects all recognitions ρ such that ρ ≥ μ about A. This is the underlying reason
for adopting the condition 3 of Definition 5. These notions of inconsistency yield
a logical basis of attack relations described in the multiple-valued argumentation
of Section 3.

Definition 7 (Satisfaction). Let I be an interpretation. For any annotated
objective literal H and annotated literal L and Li, we define the satisfaction
relation denoted by ‘|=’ as follows.

– I |= L ⇔ L ∈ I
– I |= L1 & · · · & Ln ⇔ I |= L1, . . . , I |= Ln

– I |= H ← L1 & · · · & Ln ⇔ I |= H or I |= L1 & · · · & Ln

3 Overview of LMA

In formalizing logic of argumentation, the most primary concern is the rebuttal
relation among arguments since it yields a cause or a momentum of argumen-
tation. The rebuttal relation for two-valued argument models is most simple, so
that it naturally appears between the contradictory propositions of the form A
and ¬A. In case of multiple-valued argumentation based on EALP, much compli-
cation is to be involved into the rebuttal relation under the different concepts of
negation. One of the questions arising from multiple-valuedness is, for example,
how a literal with truth-value ρ confronts with a literal with truth-value μ in
the involvement with negation. In the next subsection, we outline important no-
tions proper to logic of multiple-valued argumentation LMA in which the above
question is reasonably solved.
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3.1 Annotated Arguments

Definition 8 (Reductant and Minimal reductant). Suppose P is an EALP,
and Ci (1 ≤ i ≤ k) are annotated rules in P of the form: A :ρi ← Li

1 & . . . & Li
ni

,
in which A is an atom. Let ρ = �{ρ1, . . . , ρk}. Then the following annotated rule
is a reductant of P .
A :ρ ← L1

1 & . . . & L1
n1

& . . . & Lk
1 & . . . & Lk

nk
.

A reductant is called a minimal reductant when there does not exist non-empty
proper subset S ⊂ {ρ1, . . . , ρk} such that ρ = �S

Definition 9 (Truth width [7]). A lattice T is n-wide if every finite set E ⊆
T , there is a finite subset E0 ⊆ E of at most n elements such that �E0 = �E.

The notion of truth width is for limiting the number of reductants to be con-
sidered in argument construction. For example, the complete lattice FOUR =
({⊥, t, f, �}, ≤), where ∀x, y ∈ {⊥, t, f, �} x ≤ y ⇔ x = y ∨ x = ⊥ ∨ y = �, is
2-wide, and the complete lattice (�[0, 1], ≤) of the unit interval of real numbers
is 1-wide.

Definition 10 (Annotated arguments). Let P be an EALP. An annotated
argument in P is a finite sequence Arg = [r1, . . . , rn] of rules in P such that for
every i (1 ≤ i ≤ n),

1. ri is either a rule in P or a minimal reductant in P .
2. For every annotated atom A :μ in the body of ri, there exists a rk (n ≥ k > i)

such that A :ρ (ρ ≥ μ) is head of rk.
3. For every o-explicit negation ∼ A :μ in the body of ri, there exists a rk (n ≥

k > i) such that ∼ A :ρ (ρ ≤ μ) is head of rk.
4. There exists no proper subsequence of [r1, . . . , rn] which meets from the first

to the third conditions, and includes r1.

We denote the set of all arguments in P by ArgsP , and define the set of
all arguments in a set of EALPs MAS = {KB1, . . . , KBn} by ArgsMAS =
ArgsKB1 ∪ · · · ∪ ArgsKBn (⊆ ArgsKB1∪···∪KBn).

3.2 Attack Relation

Definition 11 (Rebut). Arg1 rebuts Arg2 ⇔ there exists A :μ1 ∈ concl(Arg1)
and ∼ A : μ2 ∈ concl(Arg2) such that μ1 ≥ μ2, or exists ∼ A : μ1 ∈ concl(Arg1)
and A :μ2 ∈ concl(Arg2) such that μ1 ≤ μ2.

Definition 12 (Undercut). Arg1 undercuts Arg2 ⇔ there exists A : μ1 ∈
concl(Arg1) and notA : μ2 ∈ assm(Arg2) such that μ1 ≥ μ2, or exists ∼ A :
μ1 ∈ concl(Arg1) and not ∼ A :μ2 ∈ assm(Arg2) such that μ1 ≤ μ2.

Definition 13 (Strictly undercut). Arg1 strictly undercuts Arg2 ⇔ Arg1
undercuts Arg2 and Arg2 does not undercut Arg1.

Definition 14 (Defeat). Arg1 defeats Arg2 ⇔ Arg1 undercuts Arg2, or Arg1
rebuts Arg2 and Arg2 does not undercut Arg1.
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When an argument defeats itself, such an argument is called a self-defeating
argument. For example, [p : t ← not p : t] and [q : f ←∼ q : f, ∼ q : f] are
all self-defeating. In this paper, however, we rule out self-defeating arguments
from argument sets since they are in a sense abnormal, and not entitled to
participate in argumentation or dialogue. In this paper, we employ defeat and
strictly undercut to specify the set of justified arguments where d stands for
defeat and su for strictly undercut.

Definition 15 (acceptable and justified argument [4]). Suppose Arg1 ∈
Args and S ⊆ Args. Then Arg1 is acceptable wrt. S if for every Arg2 ∈ Args
such that (Arg2, Arg1) ∈ d there exists Arg3 ∈ S such that (Arg3, Arg2) ∈
su. The function FArgs,d/su mapping from P(Args) to P(Args) is defined by
FArgs,d/su(S) = {Arg ∈ Args | Arg is acceptable wrt. S}. We denote a least fix-
point of FArgs,d/su by JArgs,d/su. An argument Arg is justified if Arg ∈ Jd/su; an
argument is overruled if it is attacked by a justified argument; and an argument
is defensible if it is neither justified nor overruled.

Since Fx/y is monotonic, it has a least fixpoint, and can be constructed by the
iterative method [4]. Justified arguments can be dialectically determined from a
set of arguments by the dialectical proof theory. We give the sound and complete
dialectical proof theory for the abstract argumentation semantics JArgs,x/y.

Definition 16 (dialogue [11]). An dialogue is a finite nonempty sequence of
moves movei = (Playeri, Argi), (i ≥ 1) such that

1. Playeri = P (Proponent) ⇔ i is odd;
and Playeri = O (Opponent) ⇔ i is even.

2. If Playeri = Playerj = P (i = j) then Argi = Argj.
3. If Playeri = P (i ≥ 3) then (Argi, Argi−1) ∈ su; and if Playeri = O (i ≥ 2)

then (Argi, Argi−1) ∈ d.

In this definition, it is permitted that P = O, that is a dialogue is done by only
one agent. Then, we say such an argument is a self-argument.

Definition 17 (dialogue tree [11]). A dialogue tree is a tree of moves such
that every branch is a dialogue, and for all moves movei = (P, Argi), the children
of movei are all those moves (O, Argj) (j ≥ 1) such that (Argj , Argi) ∈ d.

We have the sound and complete dialectical proof theory for the argumentation
semantics JArgs,x/y [14]. In the learning process described in the next section,
we will often take into account deliberate or thoughtful agents who put forward
deliberate arguments in the dialogue.

Definition 18 (Deliberate argumentation). Let MAS = {KB1,..., KBn},
and Argsi be a set of arguments under KBi. A dialogue is called a deliberate
argumentation if and only if arguments put forward in each move of the dialogue
belong to JArgsi,x/y.
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4 Learning by Argumentation

We have outlined notions and definitions provided in EALP and LMA that are
to be underlain in considering learning by argumentation. The most common
form of machine learning is learning from examples, data and cases such as in
inductive learning [13]. There are some argumentation-related learning meth-
ods [5][8]. They, however, are concerned with introducing traditional learning
methods from examples. From this section, we will address ourselves to a new
approach to machine learning that draws on some notions and techniques of
EALP and LMA. Although there are so many aspects, methods and techniques
already known on learning [13], our motivation for machine learning comes from
argumentation since we learn and grow through argumentation or dialogue with
our partners, friends, colleagues or even enemies in the daily life and scientific
communities, as well as through self-deliberation that can be though of as self-
argumentation. Actually, we benefit a lot from argumentation, and we believe
argumentation is a desideratum to learning.

In this paper, we propose three basic approaches to learning by argumentation,
which naturally reflect our intuitions and experiences that we have had in the
daily life so far. They are conceptually methods: (i) to correct wrong knowledge,
(ii) to reconsider, (iii) to have a second thought, through argumentation. These
are considered exhaustive in its types of argument-based learning on the basis
that the learning process is presumably triggered by the attack relation such
as the rebut and undercut of LMA. Below, let’s take up simple but natural
arguments to see shortly what they are like.

(i)Correct wrong knowledge: Here is an argument on a soap to slim between Mr.
A and Mr. B. They argue about whether the soap to slim works or not.

Mr. A: I do not have experienced its effect, but I think that it is effective because
TV commercial says so.
Mr. B: I have not become thin.
Mr. A: Now that you haven’t, I may not become thin either.

After such an argumentation, we as well as Mr. A would usually correct or
change our previous belief that the soap is effective, into its contrary. Like this,
we may correct wrong knowledge and learn counter-arguments. Technically, the
first assertion in Mr. A’s locution is considered as having an assumption ”the soap
is effective to slim”. And Mr. B argues against Mr. A. It amounts to undercut
in terms of LMA. In the next subsection 4.1, we formally capture this type
of learning by argumentation, calling it knowledge acquisition induced by the
undercut of assumptions.

(ii) Reconsider: Let’s consider the evaluation of a movie.

Mr. C: The story of the movie is so fantastic! I recommend it.
Mr. D: The performance of the actors in the movie is unskilled, so I do not
recommend it.
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Agent D states an opinion contrary to Agent C, but does not intend to refuse
and take back Agent A’s opinion. In the dialogue, they simply state their own
opinion on the evaluation of the movie. They are not necessarily in a conflict
with each other, and simply made it sure that they had a contrary opinion on the
matter. Through the dialogue, they will know or learn that there are facets or
aspects oin the movie that can be evaluated and can not. In the subsection 4.2,
we formally capture this type of learning by argumentation, calling it knowledge
acquisition induced by difference of recognition.

(iii) Have a second thought: Let’s see the third type of learning by argumenta-
tion with an argument on which is correct, the Copernican theory or Ptolemaic
theory.

Mr. E: I agree with the Ptolemaic theory because we see the Sun go around us,
and the Bible also tells us so.
Mr. F: I agree with the Copernican theory because the Earth moves according
to our observation.

People who have believed the Ptolemaic theory may have a second thought
if the Copernican theory is justified by a (scientific) argumentation. Or, they
may reach such an eclectic conclusion that both the Ptolemaic theory and the
Copernican theory are partial knowledge. In the subsection 4.3, we formally
capture this type of learning by argumentation, calling it knowledge acquisition
induced by rebut.

4.1 Knowledge Acquisition Induced by the Undercut of
Assumptions

In this paper, we think that the momentum of knowledge acquisition or learning
comes when agents recognize right and wrong of arguments. And we identify it
with the notion of justification for arguments in Definition 15. The first learning
definition based on it is the following.

Definition 19. (Knowledge acquisition induced by the undercut of as-
sumptions). Suppose KBs = {KB1, . . . , KBn} is a set of EALPs. We denote
the set of all arguments in KBi by ArgsKBi (1 ≤ i ≤ n), and Arg is an ar-
gument in ArgsKBi . Let JA be the set of justified arguments. If there exists an
argument Arg′ ∈ JA such that it undercuts Arg, we say Agent i acquires Arg′,
letting KB′i = KBi ∪ {Arg′}.
After argumentation, Agent i acquires all the rules included in Arg′ with this
definition.

Corollary 1. The new knowledge base of KB′i after knowledge acquisition in-
duced by the undercut of assumptions is inconsistent in default (d-inconsistent),
that is, the interpretation I such that ∀B ∈ KB′i |= B is d-inconsistent.

The proof is straightforward, and importantly we do not need to have a fear of
such an inconsistency since our EALP is advantageously paraconsistent [14]. If
the underlying complete lattice of truth values is 1-wide, then we have
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Corollary 2. JA is preserved by knowledge acquisition induced by the undercut
of assumptions.

The proofs are straightforward. Taking up the previous argument example, we
illustrate how the definition operates.

Example 1. Let T = 〈R[0 1], ≤〉 be a complete lattice on the unit interval of
real numbers. Suppose Agent A and B have the following knowledge bases KBA

and KBB on a soap to slim respectively.

KBA = { become slim :0.8 ← medical rationale :0.7

& information from TV :0.8&not experience of effect :0.0,

medical rationale :0.8 ←, information from TV :0.9 ←},

KBB = { become slim :0.0 ← experience of effect :0.0,

experience of effect :0.0 ←}.

Then, the sets of arguments ArgsKBA and ArgsKBB are;
ArgsKBA = {[ become slim :0.8 ← medical rationale :0.7

& Information from TV :0.8 &not experience of effect :0.0,

medical rationale :0.8 ←, information from TV :0.9 ←],

[ medical rationale :0.8 ← ], [ information from TV :0.9 ← ]},
ArgsKBB = {[ become slim :0.0 ← experience of effect :0.0,

experience of effect :0.0 ← ], [ experience of effect :0.0 ← ]}.

These are representations of verbal and natural arguments described in (i)Correct
wrong knowledge above. The set of justified arguments JA is constructed as
follows.

JA = {[medical rationale :0.8 ←], [information from TV :0.9 ←],

[become slim :0.0 ← experience of effect :0.0, experience of effect :0.0 ←],

[experience of effect :0.0 ← ]}.

JA can be seen as a set of agreements on various issues among agents concerned.
Agents then get down to acquiring knowledge with JA based on Definition 19.
Suppose Agent A put forward the following argument Arg1.

Arg1 = [ become slim :0.8 ← medical rationale :0.7& information from TV :0.9

&not experience of effect :0.0, medical rationale :0.8 ←,

information from TV :0.9 ← ].

However, it can be seen that it is undercut by justified arguments,

Arg2 = [ experience of effect :0.0 ← ].

Therefore, agent A acquires Arg2, and builds a new knowledge base KB′A as
follows.

KB′
A = { become slim :0.8 ← medical rationale :0.7

& information from TV :0.9&not experience of effect :0.0,

medical rationale :0.8 ←, experience of effect :0.0 ←,

information from TV :0.9 ←}.
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It is noted that agent A is no more entitled to put forward the previous argument
Arg1 with KB′A since the newly added rule ‘experience of effect : 0.0 ←’ im-
mediately blocks it by undercut under deliberate argumentation in Definition 18.
Note also that the new knowledge base of an agent after argumentation does not
coincide with the set of justified arguments JA that has been obtained before the
learning process. For example,KB′A = JA in general.Thismeans that the learning
is a genuine process to raise a agent’ mind under selective attention. This property
also applies to the succeeding two knowledge acquisition approaches below.

4.2 Knowledge Acquisition Induced by Difference of Recognition

In this section, we describe the second learning method inspired by the notion
of difference of recognition.

Definition 20 (Difference of recognition). Let KBs = {KB1, ..., KBn} be
a set of EALPs, ArgsKBi and ArgsKBk

(1 ≤ i, k ≤ n) be the sets of all arguments
in KBi and KBk respectively, and Arg be an argument in ArgsKBi . If there exist
A : μ1 ∈ concl(Argi) and A : μ2 ∈ concl(Argk) such that μ1 = μ2, agent i and
agent k have different recognition about the proposition A.

Example 2. Let a lattice T = R[0, 1] and knowledge bases KB1 = {p : 0.8 ← q :
0.4, q : 0.5 ← }, KB2 = {p : 0.5 ← q : 0.2, q : 0.5 ← }. ArgsKB1 and ArgsKB2 are
basically the same as above as follows.

Arg1 = [p :0.8 ← q :0.4, q :0.5 ← ], Arg2 = [p :0.5 ← q :0.2, q :0.5 ← ]

Then, agent 1 and agent 2 have different recognition about p.

In argumentation, we did not pay attention to difference of recognition agents
hold, which does not produce any conflict between them, but simply represents
their own views mutually. From learning point of view, however, we suppose
agents wish to know and learn the other party’s opinion or view. Based on the
two notions of difference of recognition and justified arguments, we capture this
by classifying it into three cases: (1) both Arg1 and Arg2 are justified, (2) either
Arg1 or Arg2 is justified, and (3) neither Arg1 nor Arg2 is justified.

Definition 21 (Knowledge acquisition induced by difference of recog-
nition). Let KBs={KB1, ..., KBn} be a set of EALPs, ArgsKBi and ArgsKBk

(1 ≤ i, k ≤ n) be the sets of all arguments in KBi and KBk respectively, and
Argi ∈ ArgsKBi and Argk ∈ ArgsKBk

in which there exist A :μ1 ∈ concl(Argi)
and A : μ2 ∈ concl(Argk) such that μ1 = μ2. JA denotes the set of justified
arguments. Then,

1. if Argi ∈ JA and Argk ∈ JA, agent i updates KBi to KB′i = KBi∪ArgKBk
,

and agent k updates KBk to KB′k = KBk ∪ ArgKBi ;
2. if ArgKBi ∈ JA and ArgKBk

∈ JA, then agent k updates KBk to KB′k =
KBk ∪ ArgKBi ;

3. if ArgKBi ∈ JA and ArgKBk
∈ JA, then agent i and k do not learn anything,

resulting in no updates on their knowledge bases.
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Under this definition, agents or agents’ attitude toward update are supposed
to be credulous in the sense that they update their knowledge bases as far as
arguments are justified. On the other hand, skeptical agents would have taken
such an attitude that they update their knowledge bases by adding weight to
rules or arguments to be accepted. For instance, an argument [p :0.8 ← q :0.4, q :
0.5] from agent i might be weighted as [p : 0.8 × αY ← q : 0.4 × αY , q : 0.5 × αY ]
and accepted by agent k who has a trust value αY in agent i.

Corollary 3. The new knowledge base of KB′ after knowledge acquisition in-
duced by difference of recognition can be inconsistent in d-inconsistent or o-
inconsistent, that is, the interpretation I such that ∀B ∈ KB I |= KB′ is
d-inconsistent or o-inconsistent.

Again we do not need to have a fear of such an inconsistency since our EALP is
advantageously paraconsistent [14]. If the underlying complete lattice of truth
values is 1-wide, then we have

Corollary 4. JA is preserved by knowledge acquisition induced by difference of
recognition.

Example 3. Let T = FOUR, and MAS = {KBA, KBB}, where Agent A and
B have the following knowledge bases on the evaluation of a movie.

KBA = { recommend(movie) :t ← famous(actor) :t& famous(story) :t,
famous(actor) :t ←, famous(story) :t ← },

KBB = { recommend(movie) : f ← poor(actor) :t& see(movie) :t,
poor(actor) :t ←, see(movie) :t ← }.

Suppose they put forward the arguments ArgA and ArgB respectively.

ArgA = [ recommend(movie) :t ← famous(actor) :t& famous(story) :t,
famous(actor) :t ←, famous(story) :t ←],

ArgB = [ recommend(movie) : f ← poor(actor) :t& see(movie) :t,
poor(actor) :t ←, see(movie) :t ← ].

Then, there is no attack relation between them, so all arguments made from
MAS are justified (JA = ArgsKBA ∪ ArgsKBB ). However, agent A and B have
difference of recognition about recommend(movie). So they go into the learning
process of and get the new knowledge base KB′A and KB′B respectively.

KB′
A = KB′

B = { recommend(movie) :t ← famous(actor) :t& famous(story) :t,
recommend(movie) : f ← poor(actor) :t& see(movie) :t,
poor(actor) :t ←, see(movie) :t ← famous(actor) :t ←, famous(story) :t ←, }

The new set of justified argument JA’ constructed from these new KB′A and
KB′B includes the additional argument:

[recommend(movie) :� ← famous(actor) :t
& famous(story) :t& poor(actor) :t & see(movie) :t,
famous(actor) :t ←,
famous(story) :t ←, poor(actor) :t ←, see(movie) :t ← ].



28 T. Fukumoto and H. Sawamura

This is due to the reductant constructed from two contrary propositions:
recommend(movie) : t and recommend(movie) : f. This fact also exemplifies the
failure Corollary 4 since T is not 1-wide. In argumentation, both agents A and B
only got on their soapbox, but they do not intend to exclude the other’s argument.
What they get to know through learning is that the movie has good and wrong
points: recommend(movie) :�. In EALP, this does not mean a contradiction but
a way of recognizing things. Agents now is in such an epistemic state.

4.3 Knowledge Acquisition Induced by Rebut

In this subsection, we formally consider the third learning scheme that we have
seen in an argument example on which is correct, the Copernican theory or
Ptolemaic theory. In terms of LMA, it is a scheme induced by rebut since these
two theories rebut each other. Then, we consider it by three cases similarly to
Definition 21. First, we introduce a preliminary notion of Agreement rule and
Agreed composite argument.

Definition 22 (Agreement rule and Agreed composite argument). Let
MAS = {KB1, ..., KBn} be a set of EALPs, ArgsKBi (1 ≤ i ≤ n) be the set of
all arguments in KBi, Argi and Argk be in ArgsKBi and ArgsKBk

respectively,
and JA be the set of justified argument.

Suppose Argi=[ri
1, . . . , r

i
n] ∈ JA such that ri

1 = A :μ1 ← Li
1 & . . . & Li

ni
, and

Argk =[rk
1 . . . , rk

m] ∈ JA such that rk
1 =∼ A : μ2 ← Lk

1 & . . . & Lk
nk

, and A : μ1
and ∼ A : μ2 rebut each other. Then, we call the following synthetic rule an
agreement rule:

A : ρ ← Li
1 & . . . & Li

ni
& Lk

1 & . . . & Lk
nk

for some ρ such that ρ < μ2. And
the following argument is called an agreed composite argument (ACA):

ACA = [A :ρ ← Li
1 & . . . & Li

ni
& Lk

1 & . . . & Lk
nk

; (Arg1 \ ri
1); (Arg2 \ rk

1 )],
where the semicolon denotes the list concatenation.

This definition is given relying upon the notion of justified arguments like the
previous definitions of learning. Let us see an intuitive meaning of the agreement
rule. Suppose [∼ A :t] ∈ JA and [A :t] ∈ JA under the complete lattice of ideals
of FOUR. The regions of ideals [14] for two conflicting literals A :t and ∼ A :t
and the agreement region for both A : t and ∼ A : t is seen in Figure 1. Those
two regions are disjoint, meaning inconsistency. However, we can observe the
common element ⊥ in those two regions (except for an empty ideal), which we
view as an agreed truth value. The ρ in Definition 22 may be arbitrary as far
as it is less than μ2. Credulous agents may get values that are the closest truth
value to μ2. Skeptical agents may get the lowest truth value.

Example 4. Let T = R[0, 1] and MAS = {KB1, KB2}, where

KB1 = {p :0.8 ← q :0.4 &not r :0.1, q :0.5}, KB2 = {∼ p :0.6 ← r :0.1, r :0.5}.

Then, the arguments are as follows:
Arg1 = [p :0.8 ← q :0.4 &not r :0.1, q :0.5], Arg2 = [∼ p :0.6 ← r :0.1, r :0.5].

After argumentation, we have Arg1 ∈ JA, Arg2 ∈ JA, and hence an agreed
composite argument, [p :ρ ← q :0.4 & r :0.1, q :0.5, r :0.5] for ρ < 0.6.
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T

T

tf

Belief region of A:t

Belief region of ~A:t

 φ

T   ={ T, t, f,     }
 t   ={ t,    }
φ   ={ }

T

     ={   }
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 f    ={ f,    }

T

{A : t holds at

~A : t holds at {

T

Fig. 1. Relation of belief regions, where ‖μ‖ = {ρ ∈ T | ρ ≤ μ})

Using the notions of ACA, we give a method of knowledge acquisition induced
by rebut.

Definition 23 (Knowledge acquisition induced by rebut). Let MAS =
{KB1, ..., KBn} be a set of EALPs, ArgsKBi (1 ≤ i ≤ n) be the set of all
arguments in KBi, Argi and Argk be in ArgsKBi and ArgsKBk

respectively,
and JA be the set of justified argument. Suppose Argi=[ri

1, . . . , r
i
n] such that

ri
1 = A :μ1 ← Li

1 & . . . & Li
ni

, and Argk =[rk
1 . . . , rk

m] such that rk
1 =∼ A :μ2 ←

Lk
1 & . . . & Lk

nk
, and A :μ1 and ∼ A :μ2 rebut each other. Then,

1. if Argi ∈ JA rebuts Argk ∈ JA, then KB′k = KBk ∪ Argi \ rk
1 ;

2. if Argi ∈ JA rebuts Argk ∈ JA, then agent i makes an agreed composite
argument ACA from Argi and Argk, and KB′i = KBi ∪ ACA \ {ri

1};
3. if Argi ∈ JA rebuts Argk ∈ JA, agents i and k do not learn anything,

resulting in no change in their knowledge bases.

Example 5. Consider T = {1, 2, ..., 10}, and MAS = {KBA, KBB, KBC},
where KBA = { recommend(movie) :8

← good story :9&not expensive(movie) :7, good story :9 ← },
KBB = {∼ recommend(movie) :2 ← skilled actor :3, skilled actor :3 ← },
KBC = {recommend(movie) :1 ← expensive(movie) :8, expensive(movie) :8 ← }.
When these agents argue about the issue recommend (movie): 8, agent B’s ar-
gument and agent C’s argument are justified. Following Definition 21, agent A
obtains the following new knowledge:

KB′
A = { recommend(movie) :1 ←

actor :3& story :9&not expensive :7, actor :3 ←, story :9 ←}.

Without simply renouncing his belief, agent A still has his belief recommend
(movie) but with a less truth value 1 than 2 of agent B and his original value 8
since the part of premises of the original rule, story :t, is justified (in fact there
is no objection to it). Furthermore, at the beginning of the argument, agent A
has no information about the actor, but through the argumentation, he got to
know about the actor. As the result, he degraded his belief recommend(movie),
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but still keeps it with a different truth value and an newly added premise. This
type of learning looks very natural in our daily life as well.

5 Illustrative Examples of ABL

In this section, we describe an overall argumentation example to show the effec-
tiveness and usefulness of the agent learning methods based on argumentation.
we describe a dynamically changing argument example in which agents are in-
volved in not only a single argument at a time but a process of consecutive
arguments over time, and agents gradually become wise through them. This
suggests an interesting and important direction to which argumentation studies
head from now since acquisition not only ends once and for all, but also it contin-
ues repeatedly every time new information are found and added, and new agents
appear. Similar observation can be seen in dialectic development of thought, so-
ciety and so on in philosophy, and social processes of scientific development in
philosophy of science.

Example 6. Let T = R[0, 1] be a complete lattice of the unit interval of real
numbers. Consider the following multi-agents systems,
MAS = {KBChild, KBPtolemy, KBCopernicus}, where

KBChild = { agree(Ptolemaic theory) :0.0 ←, agree(Copernican theory) :0.0 ← },
(Child agent knows neither Ptolemaic theory nor Copernican theory.)

KBPtolemy = { agree(Ptolemaic theory) :1.0 ← move(Sun) :1.0,

∼ agree(Copernican theory) :1.0 ← bible :1.0 &not move(Earth) :1.0,

stay(Earth) :0.2 ← notmove(Earth) :0.0, see(moving Sun) :1.0 ←,

∼ move(Earth) :1.0 ← bible :1.0, bible :1.0 ←, move(Earth) :0.0 ←,

move(Sun) :1.0 ← see(moving Sun) :1.0 &notmove(Earth) :1.0 },
KBCopernicus = { ∼ agree(Ptolemaic theory) :1.0 ← move(Sun) :0.0,

agree(Copernican theory) :1.0 ← move(Earth) :1.0, move(Sun) :1.0 ←,

move(Earth) :1.0 ← observation :0.8, move(Earth) :1.0, observation :0.8 ←}.

First, consider the situation in which Child agent meets Ptolemy agent and
argues about astronomy. Then, no conflicts take place between them, and their
arguments are to be justified as can be seen from their knowledge bases. This sit-
uation represents Difference of recognition in Definition 20. Therefore, according
to Definition 21, Child agent’s knowledge is simply increased as follows.

KB′
Child = { agree(Ptolemaic theory) :0.0 ←, agree(Copernican theory) :0.0 ←,

∼ agree(Copernican theory) :1.0 ← bible :1.0&notmove(Earth) :1.0,

agree(Ptolemaic theory) :1.0 ← move(Sun) :1.0,

stay(Earth) :0.2 ← notmove(Earth) :0.0, ∼ move(Earth) :1.0 ← bible :1.0,

bible :1.0 ←, move(Earth) :0.0 ←,see(moving Sun) :1.0 ←
move(Sun) :1.0 ← see(moving Sun) :1.0 &notmove(earth) :1.0 }

The addition means that Child agent has become agreeable to the Ptolemaic
theory through the argumentation with Ptolemy agent. In this example we omit
the change of Ptolemy agent’s knowledge since we are now not concerned with
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it. Second, consider the succeeding situation in which Child agent meets Coper-
nicus agent and argues about astronomy again with the new knowledge base
above. Figure 2 shows the overall argumentation result. Every box in Figure 2
depicts an argument of the tree form in it, and the dotted frame boxes repre-
sent justified arguments. As the result of argumentation, we have a new set of
justified argument JA as follows.

JA = {[agree(Ptolemaic theory) : 0.0 ←], [agree(Copernican theory) : 0.0 ←],
[agree(Copernican theory) :1.0 ← move(Earth) :1.0, move(Earth) :1.0 ←],
[move(Earth) :1.0 ← observation :0.8, observation :0.8 ← ],
[move(Sun) :1.0 ← ], [bible :1.0 ← ], [observation :0.8 ← ],
[move(Earth) :0.0 ← ], [see(moving Sun) :1.0 ← ] }.

As can be seen in Figure 2, there are five attack relations among arguments,
that is, Argc3 and Argd1 defeat each other, Argc5 and Argd4 defeat each other,
Argd2 strictly undercuts Argc3, Argd2 strictly undercuts Argc5 and Argd2 strictly
undercuts Argc6. Therefore depending on those five attacks, there occur five
chances for Child agent to acquire new knowledge, and also Child agent can
a quire new knowledge based on Difference of recognition between Argc6 and
Argd5. (i) According to Definition 19, Child agent knows the motion of the
Earth from the three strictly undercutting arguments above, and gets an argu-
ment Argd2. (ii) Based on Definition 21, Child agent gets an argument Argd5
since there is a difference of recognition. (iii) Based on Definition 23, Child
agent has the second thought about Copernican theory since Child agent ac-
cepts Copernican theory through the argumentation with Copernican agent. So
Child agent puts away the rule ”∼ agree(Copernican theory) : 1.0 ← bible :
1.0 &notmove(Earth) : 1.0” and knows the Argd1. Furthermore, Child agent
puts away the rules which are included in Argc5 and gets the ACA.

ACA = [agree(Ptolemaic theory) :ρ ← move(Sun) :1.0 & move(Sun) :0.0,
move(Sun) : 1.0 ← see(moving Sun) : 1.0, see(moving Sun) : 1.0, move(Sun) :
0.0 ], (ρ < 1.0). Consequently Child agent acquires the following new knowledge.
KB′′Child = { agree(Ptolemaic theory) :0.0 ←,

agree(Copernican theory) :0.0 ←,
agree(Copernican theory) :1.0 ← move(Earth) :1.0,
agree(Ptolemaic theory) :ρ ← move(Sun) :1.0, bible :1.0 ←,
move(Earth) :0.0 ← observation :0.6, observation :0.6,
move(Sun) :1.0 ← see(moving Sun) :1.0, see(moving Sun) :1.0 ←,
move(Earth) :1.0 ← observation :0.8, observation :0.8 ← }.

Child agent gets to believe both Ptolemaic theory and Copernican theory, that
is, it possesses believable aspects in them. What we have presented here is said
to be unsupervised learning, that is learning without teachers. We would say
argumentation, in a sense, plays a role of teachers in a changing information space
over time. The order of argumentation and learning might bring us a different
outcome in general, resulting in non-confluent property. For this example, the
outcome coincides before and after the change of order in argumentation and
learning.
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Fig. 2. Argumentation results

6 Related Work

So far, much work has been devoted towards generic methods to update or revise
knowledge bases avoiding contradictions caused by merging them or accommo-
dating new information. However, there is few work with which we share our pur-
pose of this paper in relation to argumentation, except [1] [2] [6]. In [1], Amgoud
and Parsons propose a method to merge conflicting knowledge bases based on
their preference-based argumentation framework. It allows arguments to be built
not from a union of knowledge bases but from separate knowledge bases, and
the arguments to then be merged. For example, supports of justified arguments
can be safely merged without drawing inconsistency. In [2], Capobianco et al.
think that the beliefs of agents are warranted goals computed by argumentation.
They design the agents with ability to sense the changes in the environment and
integrate them into their existing beliefs. Then, new perceptions always super-
sede old ones. This is a simple updating method, but in doing so, they introduce
dialectical databases that is for storing arguments as precompiled knowledge to
speed up argument construction when making arguments and responding in the
future. In [6], Gómez et al. attempt to integrate their defeasible argumentation
and the machine learning technique of neural networks. The latter is used to
generate contradictory information that in turn is to be resolved by the former.
This, however, is a work on a combination of existing learning techniques with
argumentation, not an amalgamation of both. In the area of legal reasoning, we
can find some works on argument construction from the past cases in legal data
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and knowledge base. Such a case-based legal reasoning shows another possibility
of synergy of argumentation and machine learning. But it just have started.

Parsons, Wooldridge and Amgoud explore how the kinds of dialogue in which
agents engage depend upon features of the agents themselves and then intro-
duced assertion attitudes such as confident, careful and thoughtful and accep-
tance attitudes such as credulous, cautious and skeptical [10], to examine the
effects of those features on the way in which agents determine what locutions
can be made in the progress of a dialogue. Our agents are confident in their argu-
mentation on the basis of the dialectical proof theory, but our learning policies
at the end of an argument in this paper is similar to their notions of thoughtful
and skeptical in the sense that ours are based on the set of justified arguments,
JA. However, it does not mean that our learning agents should accept or acquire
JA that include the knowledge of the other party in an unprincipled way even
if they are part of JA. Otherwise, every agent engaged in an argument would
become identical, resulting in the same knowledge base and hence the loss of its
personality. This situation is not desirable in our view. In fact, we have intended
to give three knowledge acquisition methods in such a way that knowledge base
after learning does not always coincide with JA. Put it differently, we would say
that our learning agents are much more deliberative rather than thoughtful or
skeptical. Paglieri and Casterfranchi claim that belief revision and argumenta-
tion should be grounded in cognitive processing of epistemic states and dynamics
of agents [9]. This is an important direction to learning agents, but we think that
the underlying framework EALP and LMA for ABL are comprehensive enough
to take into consideration cognitive aspects of belief revision and argumentation.
In fact, the second knowledge acquisition induced by difference of recognition
shows one evidence to direct our work to such an attempt.

7 Concluding Remarks and Future Work

We provided three basic methods of learning towards argument-based learning
(ABL). We think that they are unique in two senses. One is that they are not
concerned with learning in a single agent framework but with learning in a multi-
agents one where agents need to interact with other agents. The multi-agents
learning naturally becomes more complex. The other is that they are built on
the notions of attack relations in LMA and multiple-valuedness of knowledge
in EALP, such as undercutting of assumptions, difference of recognition, and
rebuts. Multiple-valued learning is more crucial and fruitful than two-valued
case for uncertain environments in particular.

We also pointed out a dynamic nature of argumentation and learning, and
showed a progressive argument example where the environment is dynamically
changing, and hence arguments and learning have to be done every time new
information are found, and new agents appear.

EALP is a very generic knowledge representation language for uncertain
arguments, and LMA built on top of it also yields a generic argumentation
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framework so that it allows agents to construct uncertain arguments under
truth values specified depending on application domains. For example, it in-
cludes Prakken and Sartor’s ELP-based argumentation framework [11] that is
now considered standard and well accepted, as a very simple special case of
LMA. Therefore, our learning methods of this paper could have extensive ap-
plicability to many argumentation models [3]. Furthermore, we think that the
learning methods under uncertain knowledge bases based on multiple-valuedness
of LMA is a novel attempt worthy of special mention since they turn to include
unique ones proper to LMA as well.

A prototype implementation of an argument-based learning system is now
going on in such a way that it is incorporated into the existing automated argu-
ment system based on EALP and LMA.

Finally, we just mention worthy to pursuit future research directions. Our
knowledge acquisition approaches are not intended to be used in any situation.
The application of each of them is related to the type of the dialogue [15] oc-
curring among agents. The detailed analysis, however, will be left to the future
work. Learning argument structures or strategies is naturally done by us in the
daily life and an important aspect of learning related to argumentation as well.
This, in general, is called topica, a set of topos, which dates back to ancient
Greek and can be seen in Aristotle’s Rhetoric, turning our eyes to philosophy.
Argumentation is a special apparatus of dialogue. In the next stage, we will
address to learning through dialogue from a broader angle.
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8. Možina, M., Žabkar, J., Bench-Capon, T., Bratko, I.: Application of argument
based machine learning to law. In: Proc. of the 10th International Conference on
AI and Law, ACM press, New York (2005)



Argumentation-Based Learning 35

9. Paglieri, F., Castelfranchi, C.: Revising beliefs through arguments: Bridging the
gap between argumentation and belief revision in mas. In: Rahwan, I., Moräıtis,
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Santiago Ontañón1 and Enric Plaza2

1 CCL, Cognitive Computing Lab
College of Computing, Georgia Institute of Technology

266 Ferst Drive, Atlanta, Georgia 30332, USA
santi@cc.gatech.edu

2 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain
enric@iiia.csic.es

Abstract. Multiagent learning can be seen as applying ML techniques
to the core issues of multiagent systems, like communication, coordi-
nation, and competition. In this paper, we address the issue of learn-
ing from communication among agents circumscribed to a scenario with
two agents that (1) work in the same domain using a shared ontology,
(2) are capable of learning from examples, and (3) communicate using
an argumentative framework. We will present a two fold approach con-
sisting of (1) an argumentation framework for learning agents, and (2)
an individual policy for agents to generate arguments and counterargu-
ments (including counterexamples). We focus on argumentation between
two agents, presenting (1) an interaction protocol (AMAL2) that allows
agents to learn from counterexamples and (2) a preference relation to
determine the joint outcome when individual predictions are in contra-
diction. We present several experiment to asses how joint predictions
based on argumentation improve over individual agents prediction.

1 Introduction

Argumentation frameworks for multiagent systems can be used for different pur-
poses like joint deliberation, persuasion, negotiation, and conflict resolution. In
this paper, we focus on argumentation-based joint deliberation among learning
agents. Argumentation-based joint deliberation involves discussion over the out-
come of a particular situation or the appropriate course of action for a particular
situation. Learning agents are capable of learning from experience, in the sense
that past examples (situations and their outcomes) are used to predict the out-
come for the situation at hand. However, since individual agents experience may
be limited, individual knowledge and prediction accuracy is also limited. Thus,
learning agents that are capable of arguing their individual predictions with
other agents may reach better prediction accuracy after such an argumentation
process.
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In this paper we address the issue of joint deliberation among two learning
agents using an argumentation framework. Our assumptions are that these two
agents work in the same domain using a shared ontology, they are capable of
learning from examples, and they interact following a specific interaction pro-
tocol. In this paper, we will propose an argumentation framework for learning
agents, and an individual policy for agents to generate arguments and counter-
arguments.

Existing argumentation frameworks for multiagent systems are based on de-
ductive logic. An argument is seen as a logical statement, while a counterargu-
ment is an argument offered in opposition to another argument [6, 18]. However,
these argumentation frameworks are not designed for learning agents, since they
assume a fixed knowledge base. Learning agents, however may generate several
generalizations that are consistent with the examples seen at a particular mo-
ment in time; the bias of the generalization technique used determines which of
the valid generalizations is effectively hold by a learning agent.

Having learning capabilities allows agents a new form of counterargument,
namely the use of counterexamples. Counterexamples offer the possibility of
agents learning during the argumentation process, and thus improving their per-
formance (both individual and joint performance). Moreover, learning agents will
allow us to design individual agent policies to generate adequate arguments and
counterarguments. Existing argumentation frameworks mostly focus on how to
deal with contradicting arguments, while few address the problem of how to
generate adequate arguments (but see [18]). Thus, they focus on the issue defin-
ing a preference relation over two contradicting arguments; however for learning
agents we will need to address two issues: (1) how to define a preference rela-
tion over two conflicting arguments, and (2) how to define a policy to generate
arguments and counterarguments from examples.

In this paper we present a case-based approach to address both issues. The
agents use case-based reasoning (CBR) to learn from past cases (where a case is
a situation and its outcome) in order to predict the outcome of a new situation;
moreover, the reasoning needed to support the argumentation process will also
be based on cases. In particular, both the preference relation among arguments
and the policy for generating arguments and counterarguments will be based
on cases. Finally, we propose an interaction protocol called AMAL2 to support
the argumentation process among two agents to reach a joint prediction over a
specific situation or problem.

In the remainder of this paper we are going to introduce the multiagent CBR
framework (MAC) in which we perform our research (Section 2). In this frame-
work, Section 2.1 introduces the idea of justified predictions. After that, Section 3
provides a specific definition of arguments and counterarguments that we will
use in the rest of the paper. Then, Section 4 defines a preference relation be-
tween contradicting arguments. Section 5 presents specific policies to generate
both arguments and counterarguments. Using the previous definitions, Section 6
presents a protocol called AMAL2 to allow two agents to solve a problem in a
collaborative way using argumentation. Finally Section 7 presents an empirical
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Fig. 1. Simple Justification generation example using a decision tree

evaluation of the argumentation protocol presented. The paper closes with re-
lated work and conclusions sections.

2 Case-Based Multiagent Learning

In this section we are going to define the multiagent learning framework in which
our research is performed [15].

Definition 1. A Multiagent Case Based Reasoning System (MAC) M = {(A1,
C1), ..., (An, Cn)} is a multiagent system composed of A = {Ai, ..., An}, a set of
CBR agents, where each agent Ai ∈ A possesses an individual case base Ci.

Each individual agent Ai in a MAC is completely autonomous and each agent
Ai has access only to its individual and private case base Ci. A case base
Ci = {c1, ..., cm} is a collection of cases. Agents in a MAC system are able
to individually solve problems, but they can also collaborate with other agents
to solve problem in a collaborative way.

In this framework, we will restrict ourselves to analytical tasks, i.e. tasks, like
classification, where the solution of a problem is achieved by selecting a solution
class from an enumerated set of solution classes. In the following we will note
the set of all the solution classes by S = {S1, ..., SK}. Therefore, a case is a
tuple c = 〈P, S〉 containing a case description P and a solution class S ∈ S. In
the following, we will use the terms problem and case description indistinctly.
Moreover, we will use the dot notation to refer to elements inside a tuple. e.g.,
to refer to the solution class of a case c, we will write c.S.

2.1 Justified Predictions

Many expert and CBR systems have an explanation component [19]. The ex-
planation component is in charge of justifying why the system has provided a
specific answer to the user. The line of reasoning of the system can then be
examined by a human expert, thus increasing the reliability of the system.
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Most of the existing work on explanation generation focuses on generating
explanations to be provided to the user. However, in our approach we use expla-
nations (or justifications) as a tool for improving communication and coordina-
tion among agents. We are interested in justifications to be used as arguments.
For that purpose, we take benefit from the ability of some learning systems to
provide justifications.

Definition 2. A justification built by a CBR method to solve a problem P that
has been classified into a solution class Sk is a description that contains the
relevant information that the problem P and the retrieved cases C1, ..., Cn (all
belonging to class Sk) have in common.

For example, Figure 1 shows a justification build by a decision tree for a toy prob-
lem. In the figure, a problem has two attributes (traffic light, and cars crossing),
after solving it using the decision tree shown, the predicted solution class is wait.
Notice that to obtain the solution class, the decision tree has just used the value
of one attribute, traffic light. Therefore, the justification must contain only the
attribute/value pair shown in the figure. The values of the rest of attributes
are irrelevant, since whatever their value the solution class would have been the
same.

In general, the meaning of a justification is that all (or most of) the cases in
the case base of an agent that satisfy the justification (i.e. all the cases that are
subsumed by the justification) belong to the predicted solution class. In the rest
of the paper, we will use � to denote the subsumption relation. In our work, we
use LID [3], a CBR method capable of building symbolic justifications. LID uses
the feature term formalism (or ψ-terms) to represent cases [2].

We call justified prediction the justification for a prediction provided by a
learning agent:

Definition 3. A justified prediction is a tuple 〈A, P, S, D〉 containing the prob-
lem P , the solution class S found by the agent A for the problem P , and the
justification D that endorses S as the correct solution for P .

Justifications can have many uses for CBR systems [10, 14]. In this paper, we
are going to use justifications as arguments, in order to allow agents to engage
case based based argumentation processes.

3 Argumentation in Multiagent Learning

Let us start by presenting a definition of argument that we will use in the rest
of the paper:

Definition 4. An argument α generated by an agent A is composed of a state-
ment S and some evidence D supporting that S is correct.

In the remainder of this section we will see how this general definition of ar-
gument can be instantiated in specific kind of arguments that the agents can
generate. In the context of MAC systems, agents argue about the correct solu-
tion of new problems and can provide information in two forms:
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Fig. 2. Relation between cases and justified predictions. The case c is a counterexample
of the justified prediction α in c), while it is not in a) and b).

– A specific case: 〈P, S〉,
– A justified prediction: 〈A, P, S, D〉.

In other words, agents can provide specific cases or generalizations learnt
from cases. Using this information, and having in mind that agents will only
argue about the correct solution of a given problem, we can define three types
of arguments: justified predictions, counterarguments, and counterexamples.

– A justified prediction α = 〈A, P, S, D〉 is generated by an agent Ai to argue
that Ai believes that the correct solution for a given problem P is α.S, and
the evidence provided is the justification α.D. In the example depicted in Fig-
ure 1, an agent Ai may generate the argument α = 〈Ai, P, Wait, (Traffic light
= red)〉, meaning that the agent Ai believes that the correct solution for P
is Wait because the attribute Traffic light equals red.

– A counterargument β is an argument offered in opposition to another ar-
gument α. In our framework, a counterargument consists of a justified pre-
diction 〈Aj , P, S′, D′〉 generated by an agent Aj with the intention to rebut
an argument α generated by another agent Ai, that endorses a different
solution class than α for the problem at hand and justifies this with a jus-
tification D′. In the example depicted in Figure 1, if an agent generates
the argument α = 〈Ai, P, Walk, (Cars crossing = no)〉, an agent that thinks
that the correct solution is Stop might answer with the counterargument
β = 〈Aj , P, Stop, (Cars crossing = no ∧ Traffic light = red)〉, meaning that
while it is true that there are no cars crossing, the traffic light is red, and
thus the street cannot be crossed.

– A counterexample c = 〈P, S〉 is a case that contradicts an argument α. Specif-
ically, for a case c to be a counterexample of an argument α, the following
conditions have to be met: α.D � c.P and α.S �= c.S. Figure 2 illustrates
the concept of a counterexample: justified predictions are shown above the
triangles while the specific cases subsumed by the justified predictions are
at the bottom of the triangles. Figure 2 presents three situations: In a) c is
not a counterexample of α since the solution of c is the solution predicted
by α; in b) c is not a counterexample of α since c is not subsumed by the
justification α.D; finally, in c) c is a counterexample of α).
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By exchanging arguments and counterarguments (including counterexamples),
agents can argue about the correct solution of a given problem. However, in order
to do so, they need a specific interaction protocol, a preference relation between
contradicting arguments, and a decision policy to generate counterarguments (in-
cluding counterexamples). In the following sections we will present these three
elements.

4 Case Based Preference Relation

The argument that an agent provides might not be consistent with the informa-
tion known to other agents (or even to some of the information known by the
agent that has generated the justification due to noise in training data). For that
reason, we are going to define a preference relation over contradicting justified
predictions based on cases. Basically, we will define a confidence measure for each
justified prediction (that takes into account the cases known by each agent), and
the justified prediction with the highest confidence will be the preferred one.

The confidence of justified predictions is assessed by the agents via an process
of examination of justifications. During this examination, the agents will count
how many of the cases in their case bases endorse the justified prediction, and
how many of them are counterexamples of that justified prediction. The more
endorsing cases, the higher the confidence; and the more the counterexamples,
the lower the confidence.

Specifically, to examine a justified prediction α, an agent obtains the set of
cases contained in its individual case base that are subsumed by α.D. The more
of these cases that belong to the solution class α.S, the higher the confidence
will be. After examining a justified prediction α, an agent Ai obtains the aye
and nay values:

– The aye value Y Ai
α = |{c ∈ Ci| α.D � c.P ∧ α.S = c.S}| is the number of

cases in the agent’s case base subsumed by the justification α.D that belong
to the solution class α.S proposed by J,

– The nay value NAi
α = |{c ∈ Ci| α.D � c.P ∧ α.S �= c.S}| is the number

of cases in the agent’s case base subsumed by justification α.D that do not
belong to that solution class.

When two agents A1 and A2 want to assess the confidence on a justified
prediction α made by one of them, each of them examine the prediction and
sends the aye and nay values obtained to the other agent. Then, both agents
have the same information and can assess the confidence value for the justified
prediction as:

C(α) =
Y A1

α + Y A2
α + 1

Y A1
α + Y A2

α + NA1
α + NA2

α + 2

i.e. the confidence on a justified prediction is the number of endorsing cases
divided by the number of endorsing cases plus counterexamples found by each
of the two agents. The reason for adding one to the numerator and 2 to the
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denominator is the Laplace correction to estimate probabilities. This prevents
assigning excessively high confidences to justified predictions whose confidence
has been computed using a small number of cases (in this way, a prediction
endorsed by 2 cases and with no counterexamples has a lower confidence than a
prediction endorsed by 10 cases with no counterexamples).

Using the previously defined confidence measure, the preference relation used
in our framework is the following one: a justified prediction α is preferred over
another one β is C(α) ≥ C(β).

5 Generation of Arguments

In our framework, arguments are generated by the agents using CBR algorithms.
However, any learning method able to provide a justified prediction can be used
to generate arguments. In particular, we use the LID CBR method [3].

When an agent wants to generate an argument endorsing that a specific so-
lution class is the correct solution for a given problem P , it generates a justified
prediction as explained in Section 2.1.

For instance, Figure 4 shows an argument generated by LID in the sponge
data set, used in our experiments. Specifically, the argument shown in Figure 4
endorses the solution hadromerida for a particular problem P . The justification
D1 in that argument can be interpreted saying that “the prediction for P is
hadromerida because the smooth form of the megascleres of the spikulate skele-
ton of the sponge is of type tylostyle, the spikulate skeleton has no uniform
length, and there is no gemmules in the external features of the sponge”.

5.1 Generation of Counterarguments

When an agent Ai generates a counterargument β to rebut an argument α, Ai

expects that β is preferred over α. With that purpose, in this section we are
going to present a specific policy to generate counterarguments based on the
specificity criterion [16].
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Fig. 4. Example of an argument generated using LID in the marine sponges domain
(used in our experiments)

The specificity criterion is widely used in deductive frameworks for argumen-
tation, and states that between two conflicting arguments, the most specific
should be preferred since it is, in principle, more informed. Thus, counterargu-
ments generated based on the specificity criterion are expected to be preferable
(since they are more informed) to the arguments they try to rebut. However,
there is no guarantee that such counterarguments will always win, since we use
a preference relation based on joint confidence. Moreover, one may think that it
would be better that the agents generate counterarguments based on the joint
confidence preference relation; however that is not feasible, since collaboration
is required in order to evaluate joint confidence. Thus, the agent generating the
counterargument should constantly communicate with the other agents at each
step of the CBR algorithm used to generate counterarguments.

Therefore, when an agent wants to generate a counterargument β to an ar-
gument α, it will generate a counterargument that it is more specific than α.
Figure 3 illustrates this idea. In Figure 3.c) β is a counterargument of α, and is
more specific than α. However in Figure 3.a) β is not more specific than α and
in Figure 3.c) both arguments endorse the same solution, and thus β is not a
counterargument of α.

The generation of counterarguments using the specificity criterion imposes
some restrictions over the learning method, although LID or ID3 can be easily
adapted to generate counterarguments. For instance, LID is an algorithm that
generates a description starting by the empty term and heuristically adding fea-
tures to that term. Thus, at every step, the description is made more specific
than in the previous step, and the number of cases that are subsumed by that
description is reduced. When the description only covers cases of a single solution
class LID terminates and predicts that solution class. To generate a counterar-
gument to an argument α LID just has to use as starting point the description
α.D instead of the empty term. In this way, the justification provided by LID
will always be subsumed by α.D, and thus the resulting counterargument will
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Fig. 5. Example of a counterargument generated using LID in the marine sponges
domain (used in our experiments)

be more specific than α. However, notice that LID may sometimes not be able to
generate counterarguments, since LID may not be able to specialize the descrip-
tion α.D any further, or because the agent does not own any cases subsumed by
α.D to run LID.

For instance, in response to the argument in Figure 4, an agent may generate
the counterargument shown in Figure 5. The interpretation of the justification
is similar as the previous one, but now “the grow rate of the external features
of the sponge is massive”. Finally, notice that D3 is more specific than D1.

Moreover, notice that agents can also try to rebut the other agents arguments
using counterexamples. Specifically, in our experiments, when an agent Ai wants
to rebut an argument α, uses the following policy:

1. The agent Ai tries to generate a counterargument β more specific than α (in
our experiments agents se LID). If Ai succeeds, β is sent to the other agent
as a counterargument of α.

2. If not, then Ai searches for a counterexample c ∈ Ci of α in its individual
case base Ci. If such a case c is found, then c is sent to the other agent as a
counterexample of α.

3. If no counterexamples are found, then Ai cannot rebut the argument α.

Notice that agents only send specific cases to each other if a counterargument
cannot be found. To understand why have we done that, we must have in mind a
known result in ensemble learning stating that when aggregating the predictions
of several classifiers (i.e. agents) correlation between their predictions must be
low in order to have a good classification accuracy [13]. Therefore, since when
a counterexample is sent to the other agent the degree of correlation between
the two agents case bases increases, agents prefer to send a counterargument
whenever possible, and only send a counterexample only when it is not.

The next section presents the interaction protocol we propose to perform
argumentation in our learning framework.
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6 Argumentation-Based Multiagent Learning

In this section we will present the Argumentation-based Multiagent Learning
Protocol for 2 agents (AMAL2). The idea behind AMAL2 is to allow a pair
of agents to argue about the correct solution of a problem, arriving at a join
solution that is based on their past learning and the information they exchange
during argumentation.

At the beginning of the protocol, both agents will make their individual pre-
dictions for the problem at hand. Then, the protocol establishes rules allowing
one of the agents in disagreement with the prediction of the other to provide a
counterargument. Then, the other agent can respond with another counterargu-
ment, and so on.

In the remaining of this section we will present all the elements of the AMAL2
protocol. First, we will formally present the specific performatives that the in-
dividual agents will use in the AMAL2 protocol, that will allow them to state
a prediction, to rebut an argument, and to withdraw an argument that the
other agents arguments have rendered invalid. Then we will present the AMAL2
protocol.

6.1 Protocol Performatives

During the AMAL2 protocol, each agent will propose arguments and counterar-
guments to argue about which is the correct solution for a specific problem P .
The AMAL2 protocol consists on a series of rounds. In the initial round, both
agents state with are their individual predictions for P , then, at each iteration
an agent can try to rebut the prediction made by the other agent, or change
his own prediction. Therefore, at each iteration, each of the two agents holds a
prediction that it believes is the correct one.

We will use Ht = 〈αt
1, α

t
2〉 to note the pair of predictions that each agent holds

at a round t. When at a certain iteration an agent changes its mind and changes
the prediction it is holding (because it has been convinced by the counterargu-
ments of the other agent), it has to inform the other agent using the withdraw
performative.

At each iteration, agents can send one of the following performatives to the
other agent:

– assert(α): meaning that the prediction that the agent is holding for the next
round will be α.

– rebut(α, β): meaning that the agent has found a counterargument or a coun-
terargument α to the prediction β.

– withdraw(α): meaning that the agent is removing a justified prediction α,
since the counterarguments presented by the other agent have rendered it
invalid.

In the next section the AMAL2 protocol is presented that uses the performa-
tives presented in this section.
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6.2 Case Based Argumentation Protocol

The AMAL2 protocol among two agents A1 and A2 to solve a problem P works
in a series of rounds. We will use t to denote the current round (initially t = 0).
The idea behind protocol is the following one. Initially, each agent makes its
individual prediction. Then, the confidence of each prediction is assessed, and
the prediction with the highest confidence is considered the winner. However, if
the agent that has provided the prediction with lower confidence doesn’t agree,
it has the opportunity to provide a counterargument. Agents keep exchanging
arguments and counterarguments until they reach an agreement or until no agent
is able to generate more counterexamples. At the end of the argumentation, if
the agents have not reached an agreement, then the prediction with the highest
confidence is considered the final prediction.

Notice that the protocol starts because one of the two agents receives a prob-
lem to be solved, and that agent sends the problem to the other agent requesting
him to engage in an argumentation process. Thus, after both agents know the
problem P to solve, round t = 0 of the protocol starts:

1. Initially, each one of the agents individually solves P , and builds a justified
prediction (A1 builds α0

1, and A2 builds α0
2). Then, each agent Ai sends

the performative assert(α0
i ) to the other agent. Thus, both agents know

H0 = 〈α0
1, α

0
2〉.

2. At each round t, the agents check whether their arguments in Ht agree. If
they do, the protocol moves to step 4, otherwise the agents compute the
confidence for each argument and use the preference relation (presented in
Section 4) to determine which argument in Ht is preferred. After that, the
agent that has provided the non preferred argument may try to rebut the
other agent’s argument. Each individual agent uses its own policy to rebut
arguments:

– If an agent Ai generates a counterargument αt+1
i , then it sends the

following performatives to the other agent, Aj , in a single message:
rebut(αt+1

i , αt
j), withdraw(αt

i), assert(αt+1
i ). This message starts a new

round t + 1, and the protocol moves back to step 2.
– If an agent Ai selects c as a counterexample of the other agent’s justified

prediction, then Ai sends the following performative to the other agent,
Aj : rebut(c, αt

j). The protocol moves to step 3.
– If no agent provides any argument the protocol moves to step 4.

3. The agent Aj that has received the counterexample c retains it and generates
a new argument αt+1

j that takes into account c. To inform Ai of the new argu-
ment, Aj sends Ai the following performatives withdraw(αt

j), assert(αt+1
j ).

This message starts a new round t + 1, and the protocol moves back to
step 2.

4. The protocol ends yielding a joint prediction, as follows: if both arguments
in Ht agree, then their prediction is the joint prediction; otherwise the pre-
diction in Ht with the higher confidence is considered the joint prediction.
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Moreover, in order to avoid infinite iterations, if an agent sends twice the same
argument or counterargument, the protocol also terminates.

Finally notice that when an agent Ai submits a counterargument α that de-
feats the other agents argument, then α becomes Ais argument, and thus the
other agent may try to rebut it using another counterexample.

6.3 Exemplification

Let us consider two agents A1 and A2. One of the agents, A1, receives a problem
P to solve, and decides to use AMAL2 to solve it. In particular, the problem
consists on identifying the proper order of a given marine sponge. For that reason,
invites A2 to take part in the argumentation process. A2 accepts the invitation,
and the argumentation protocol starts.

Initially, each agent generates its individual prediction for P , and assert it
using the assert performative. Thus, both of them can compute H0 = 〈α0

1, α
0
2, 〉.

In particular, in this example:

– α0
1 = 〈A1, P, hadromerida, D1〉 (specifically, the argument generated by A1

in this example is the one shown in Figure 4).
– α0

2 = 〈A2, P, astrophorida, D2〉

Then, the agents check whether their arguments agree. Since they don’t agree
(one predicts that the order of the sponge is hadromerida and the other one says
that it is astrophorida), they evaluate the confidence of each of the arguments to
see which is the preferred one. Specifically, they obtain the following confidence
values:

– C(α0
1) = 0.69

– C(α0
2) = 0.50

Therefore, the preferred argument is the one of A1, since it has the highest
confidence. For that reason, A2 will try to generate a counterargument to it.
Specifically, A2 generates the counterargument α1

2 = 〈A2, P, astrophorida, D3〉
(shown in Figure 5). Then, A2 uses the withdraw performative to withdraw his
previous argument α0

2, the assert performative to assert its new argument α1
2,

and the rebut performative to announce that α1
2 is a counterargument of α0

1.
This starts a new round, where H1 = 〈α0

1, α
1
2, 〉. The agents check again if

their arguments agree, but they still don’t agree. Thus, they evaluate again the
confidence of the arguments, and they obtain the following:

– C(α0
1) = 0.69

– C(α1
2) = 0.71

This time, it is A1 who has to generate a counterargument, since the preferred
argument is α0

1, the one of A2. In particular, in this example, A1 fails to find a
counterargument, but finds a counterexample c of α1

2. Thus, A1 sends c to A2
using the rebut performative.
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After receiving the counterexample c, A2 incorporates it into its case base
and tries to generate an updated prediction for the problem P that takes into
account the recently learnt counterexample. The prediction generated is α2

2 =
〈A2, P, hadromerida, D4〉. Thus, A2 withdraws his previous prediction with the
withdraw performative and asserts the new one using the assert performative.

This starts a new round, where H2 = 〈α0
1, α

2
2, 〉. The agents check again if their

arguments agree this time, which they do since they both predict hadromerida.
Thus, the protocol ends yielding hadromerida as the final prediction for problem
P . Moreover, as a side effect of the argumentation process A2 has learnt a new
case (the counterexample c sent by A1) that not only has been useful to correct
this prediction but will help to improve the future performance of A2.

7 Experimental Evaluation

In this section we empirically evaluate the AMAL2 argumentation protocol. We
have made experiments in two different data sets: sponge, and soybean. The
sponge data set is a marine sponge classification problem, contains 280 marine
sponges represented in a relational way and pertaining to three different orders
of the Demospongiae class. The soybean data set is a standard data sets from the
UCI machine learning repository, with 307 examples pertaining to 19 different
solution classes.

In an experimental run, training cases are distributed among the agents with-
out replication, i.e. there is no case shared by two agents. In the testing stage
problems arrive randomly to one of the agents. The goal of the agent receiving
a problem is to identify the correct solution class of the problem received.

Each experiment consists of a 10-fold cross validation run. An experiment
consists of training and test phases as usual; during the training phase the train-
ing cases are distributed among the two agents in different ways, as we will see
later. During the test phase learning is disabled, i.e. the agents cannot learn
from one test case to the next (in order to evaluate all test cases uniformly).
This is relevant here because the agents solving a test case can also learn from
other cases (the counterexamples in the argumentation process). To keep test
case uniformity the agents discard the cases learnt during the argumentation of
a test case before moving to argue about the next test case.

Moreover, we have made experiments in four different scenarios: in the first
scenario, a 100% of the cases of the training set are distributed among the agents;
in the second scenario, the agents only receive a 75% of the training cases; in the
third scenario, they only receive a 50%; finally in the fourth scenario agents only
receive a 25% of the training cases. So, for instance, in the sponge data set (that
has 280 cases), since we use 10-fold cross validation, 254 cases (a 90%) form the
training set and 28 cases (a 10%) from the test set in each experimental run. In
the scenario where a 50% of the training cases are distributed, then, only 127
of the cases in the training set will be given to the agents, thus each agent will
receive 63.5 cases in average (since the training cases are split among the two
agents).
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Fig. 6. Classification accuracy results in the Sponge and Soybean domains

We have made those experiments to see how the argumentation protocol
(and how the argument generation policies) work when the agents have different
amount of data.

Figures 6.a and 6.b show the classification accuracy achieved by agents us-
ing the AMAL2 argumentation protocol in the sponge and soybean data sets.
For each of the 4 scenarios (100%, 75%, 50% and 25%) three bars are shown:
individual, maxconf and AMAL2. The individual bar represents the classifica-
tion accuracy achieved by agents solving problems individually, the maxconf bar
represents classification accuracy of the two agents using the following simple
strategy: both agents solve the problem individually, then they evaluate the
confidence of both predictions, and the prediction with the highest confidence
is selected (notice that this is equivalent to using the AMAL2 protocol without
any agent providing any counterargument). Finally, the AMAL2 bar represents
the classification accuracy of the two agents using the AMAL2 protocol.

Figures 6.a and 6.b show several things. First, that using collaboration is
always beneficial, since both maxconf and AMAL2 systematically outperform
the individual agents in terms of accuracy. Moreover, both figures also show
that the accuracy achieved by AMAL2 is higher than that of maxconf (in fact,
AMAL2 is better or equal than maxconf in all the experiments except in the 100%
scenario of the sponge data set). Moreover, the less data the individual agents
have the greater the benefits of AMAL2 are. When each individual agent has
enough data, then predictions and confidence estimations are reliable, and thus
little or nothing is gained form the argumentation. However, when agents have
access to limited data, the argumentation process helps them finding predictions
that take into account more information, thus making the joint prediction more
accurate.

To show that our approach is proficient we can compare our results with that
of a single agent owning all the cases. In this centralized scenario the accuracy
is 89.64% for the sponge data set, and 89.12% for the soybean data set. These
results should be compared with the 100% scenarios, where individual agents
achieve a much lower accuracy but using AMAL2 they achieve a comparable
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performance to that of the centralized approach. Specifically, in the sponges data
set the accuracy of 89.64% goes down to 87.43% for individual agents, and using
AMAL2 the accuracy is 90.86%, that recovers and even surpasses the centralized
accuracy. In the soybean data set the accuracy of 89.12% goes down drastically
to 78.63% for individual agents, and using AMAL2 the accuracy is 86.25%, that
significantly recovers but not surpasses the centralized accuracy. The difference
between these two data sets is that the soybean data set has a large number of
classes and thus performance drastically diminishes when dividing the data set
among two agents (since the likelihood of an agent having cases of each specific
class diminishes). In practical terms this accuracy can be recovered by adding
redundancy to the case bases of the agents, i.e. allowing some duplicated cases
(cases that are present in both case bases) [11].

Summarizing, collaborating agents (either using argumentation or the sim-
ple maxconf method) always increase their performance with respect to their
individual performance. Similarly, using argumentation generally improves with
respect to just using the simple maxconf aggregation function. However, when
each individual agent has enough data, little is gained form the argumentation
with respect to using maxconf aggregation function. Finally, when agents have
access to limited data, there is ample opportunity for them to learn from commu-
nicating with another agent; the experiments reflect this hypothesis by the fact
that argumentation in this situations increases performance to a larger degree.

8 Related Work

Research on MAS argumentation focus on several issues like a) logics, proto-
cols and languages that support argumentation, b) argument selection and c)
argument interpretation. Approaches for logic and languages that support ar-
gumentation include defeasible logic [6] and BDI models [18]. An overview of
logical models of reasoning can be found at [5]. Moreover, the most related area
of research is case-based argumentation. Combining cases and generalizations for
argumentation has been already used in the HYPO system [4], where an argu-
ment can contain both specific cases or generalizations. Moreover, generalization
in HYPO was limited to selecting a set of predefined dimensions in the system
while our framework presents a more flexible way of providing generalizations.
Furthermore, HYPO was designed to provide arguments to human users, while
we focus on agent to agent argumentation. Case-based argumentation has also
been implemented in the CATO system[1], that models ways in which experts
compare and contrast cases to generate multi-case arguments to be presented
to law students. Moreover, the goal of CATO differs from the goal of our work,
since it is designed to allow law students to learn basic case-based argumentation
law skills.

Concerning CBR in a multiagent setting, the first research was on negoti-
ated case retrieval [17] among groups of agents. Our work on multiagent case-
based learning started in 1999 [8]; while Mc Ginty and Smyth [9] presented a
multiagent collaborative CBR approach (CCBR) for planning. Finally, another
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interesting approach is multi-case-base reasoning (MCBR) [7], that deals with
distributed systems where there are several case bases available for the same task
and addresses the problems of cross-case base adaptation. The main difference is
that our MAC approach is a way to distribute the Reuse process of CBR while
Retrieve is performed individually by each agent; the other multiagent CBR
approaches, however, focus on distributing the Retrieve process.

9 Conclusions and Future Work

In this paper we have presented a learning framework for argumentation. Specif-
ically, we have presented AMAL2, a protocol that allows two agents to argue
about the solution of a given problem. Finally, we have empirically evaluated it
showing that the increased amount of information that the agents use to solve
problems thanks to the argumentation process increases their problem solving
performance, and specially when the individual agents have access to a limited
amount of information. Clearly, an agent that knows all it needs does not need
external help (nor, by the way, needs to continue learning if there is no room for
improvement).

The main contributions of this work are: a) an argumentation framework for
learning agents; b) a case based preference relation over arguments, based on
computing a joint confidence estimation of arguments (this preference relation
has sense in this learning framework since arguments are learnt from examples);
c) a specific and efficient policy to generate arguments and counterarguments
based on the specificity relation (commonly used in argumentation frameworks);
d) a principled usage of counterexamples in the argumentation process, and e)
a specific argumentation protocol for pairs of agents that collaborate to decide
the joint solution of a given problem.

Moreover, in this work, we have focused on argumentation as a process to
improve overall performance. However, notice that the proposed argumentation
framework can also be used as a learning framework. Specifically, in [12] we show
that the argumentation framework presented in this paper can be used by a group
of agents to learn from each other. By engaging in argumentation processes, an
agent might find weak points in the arguments generated by another agent and
send him counterexamples of those wrong arguments. Notice that the agent that
generated the wrong argument is certainly interested in learn from those specific
counterexamples, since retaining them as cases in their case base will prevent
him to generate the same wrong argument in the future. Therefore, by engaging
in multiple argumentation processes with each other, each individual agent in a
group of agents can easily improve its individual accuracy by learning from the
communication content of an argumentation process.

Finally, the work presented in this paper concerns only pairs of agents. How-
ever, as future work we plan to generalize the AMAL2 protocol to work with
a larger number of agents. A possibility to do that is a token based protocol
where the agent owner of the token engages in a 1-to-1 argumentation dialog
with every other agent that disagrees with its prediction. When all these 1-to-1
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argumentation dialogs have finished, the token passes to the next agent. This
process continues until no agent engages in any new 1-to-1 argumentation. Then,
from the outcome of all the 1-to-1 argumentation processes, a joint prediction
will be achieved just as now on step 4 of the AMAL2 protocol: either the agreed
prediction or the one with higher confidence.
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Abstract. One of the most widely studied systems of argumentation
is the one described by Dung in a paper from 1995. Unfortunately, this
framework does not allow for joint attacks on arguments, which we ar-
gue must be required of any truly abstract argumentation framework.
A few frameworks can be said to allow for such interactions among ar-
guments, but for various reasons we believe that these are inadequate
for modelling argumentation systems with joint attacks. In this paper
we propose a generalization of the framework of Dung, which allows for
sets of arguments to attack other arguments. We extend the semantics
associated with the original framework to this generalization, and prove
that all results in the paper by Dung have an equivalent in this more
abstract framework.

1 Introduction

In the last fifteen years or so, there has been much interest in argumentation
systems within the artificial intelligence community1. This interest spreads across
many different sub-areas of artificial intelligence. One of these is non-monotonic
reasoning [5,6], which exploits the fact that argumentation systems can handle,
and resolve, inconsistencies [7,8] and uses it to develop general descriptions of
non-monotonic reasoning [9,10]. This line of work is summarised in [11]. Another
area that makes use of argumentation is reasoning and decision making under
uncertainty [12,13,14], which exploits the dependency structure one can infer
from arguments in order to correctly combine evidence. Much of this work is
covered in [15]. More recently [16,17], the multi-agent systems community has
begun to make use of argumentation, using it to develop a notion of rational
interaction [18,19].
1 There were AI researchers who were interested in argumentation before this, for

example [1,2,3,4], but this interest was very localized.
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One very influential system of argumentation was that introduced by Dung
[20]. This was, for instance, the basis for the work in [9], was the system extended
by Amgoud in [21,22], and subsequently as the basis for the dialogue systems in
[23,24]. In [20], Dung presents a very abstract framework for argumentation and
a series of semantics for this framework. He goes on to prove a series of relation-
ships between his framework and different varieties of formal logics, including
a proof that logic programming can be seen as a special case of his framework.
As a last result of the paper he provides a method for encoding systems of the
argumentation framework as logic programs. The importance of Dung’s results
is mainly due to the fact that his framework abstracts away from details of lan-
guage and argumentation rules, that the presented semantics therefore are clear
and intuitive, and that relationships among arguments can be analysed in isola-
tion from other (e.g. implicational) relationships. Furthermore, the results can
easily be transferred to any other argumentation framework, by identifying that
framework’s equivalent of an attack. It is this generality, we believe, that has
contributed to the popularity of the work, and we see it as a prime contender
for becoming an established standard for further investigations into the nature
of arguments and their interaction.

However, even though Dung tried to abstract away from the underlying lan-
guage and structure of arguments, he did not succeed in doing so completely.
In fact if his framework is expected to be able to model all possible kinds of
attack, there is an implicit assumption that the underlying language contains
a logical “and” connective. This hidden assumption arises from that fact that
Dung’s attack relation is a simple binary relation from one argument to another,
rather than a relation mapping sets of arguments to other sets of arguments.

While not explicitly analyzing the fundamental problem of Dung’s framework,
some previous works have allowed for sets of attacking arguments, although
mostly as side effects. We do not find these solutions fully satisfying, and none
of them can be said to be conservative generalizations of the framework of [20],
that is a generalization that makes the minimum changes to the Dung framework
necessary to allow it to handle sets of attacking arguments. We elaborate further
on this in Sect. 4.

In this paper we analyze Dung’s framework, and point out the hidden assump-
tion on the underlying language. We present a generalization of Dung’s frame-
work, keeping as close to his ideas as possible, which frees the underlying language
from being closed under some logical “and” connective. We do this by allowing sets
of arguments to attack single arguments, and provide new definitions and proofs
mirroring Dung’s results for this more general framework. We also argue why al-
lowing sets of arguments to attack other sets of arguments does not provide further
flexibility, and provide an automated encoding of systems of the new framework
in Prolog, mirroring Dung’s encoding of his systems as logic programs.

The paper is organized as follows: In Sect. 2 we present the essentials of Dung’s
framework, and then through examples illustrate how a more general attack
relation is needed for a truly abstract framework. Then, in Sect. 3 we present
our generalization of Dung’s framework, complete with definitions, proofs, and
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a Prolog encoding method. Following this, in Sect. 4, we review other works
on argumentation systems where sets of arguments can attack other arguments,
and relate them to the approach presented in this paper. Finally, we conclude on
the work presented here. Throughout the paper we use the term argumentation
system, where [20] uses argumentation framework, to denote the actual mathe-
matical structures we work with. The term framework we reserve for denoting
the overall approaches to describing and reasoning about the argumentation
systems, such as the one represented by [20] and the ones reviewed in Sect. 4.

2 Dung’s Framework

Dung [20] defines an argumentation system as a pair (A, �), where A is a set of
arguments , which can basically be anything, and � ⊆ A×A is an attack relation.
If for two arguments A and B we have A � B, then we say that A attacks B,
and that B is attacked by A. As examples, we might consider the following as
arguments:

E1 “Joe does not like Jack”,
E2 “There is a nail in Jack’s antique coffee table”,
E3 “Joe hammered a nail into Jack’s antique coffee table”,
E4 “Joe plays golf, so Joe has full use of his arms”, and
E5 “Joe has no arms, so Joe cannot use a hammer, so Joe did not hammer a

nail into Jack’s antique coffee table”.

As can be seen it is not required of an argument that it follows the “if X then
conclude Y ” pattern for reasoning, or for that matter, that it represents sound
reasoning.

As examples of attacks, we could have that E5 � E3, E3 � E5, and E4 � E5.
Intuitively, and in any common sense argumentation system, we would expect
that A�B if the validity of the argument A is somehow obstructing B from being
valid, but viewed as a mathematical entity, this is not a necessary requirement
on �.

It seems reasonable that sometimes a number of arguments can interact and
constitute a stronger attack on one or more of the other arguments. For instance,
the two arguments E1 and E2 would jointly (but not separately) provide a
case for the conclusion that Joe has hammered a nail into Jack’s antique coffee
table, and thus provide a joint attack on argument E5, which has the opposite
conclusion. If this synergy between E1 and E2 is to be modeled under Dung’s
limitations, somehow there must be a new argument:

E6: “Joe does not like Jack and there is a nail in Jack’s antique coffee table”,

which attacks E5. If this is taken to be a general solution, it is obviously required
that the underlying language is closed under some “and”-connective.

Furthermore, what we meant to state was that E1 and E2 jointly attacked
E5 and the solution does not quite suffice: It may turn out that � is defined in
such a manner that one (or both) of E1 and E2 is attacked by another valid
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argument, while E6 is not. That would mean that “Joe does not like Jack and
there is a nail in Jack’s coffee table” is a valid argument, whereas, say, “Joe
does not like Jack” is not. Clearly this is nonsense, and in order to ensure that
nonsense conclusions cannot arise, � would have to be restricted accordingly.
This muddies the clear distinction between arguments and attacks, which was
the very appeal of Dung’s framework.

These underlying consistency relations between arguments would seemingly be
good candidates for encoding in a logical language (for example E1 ∧ E2 ⇒ E6
and E6 ⇒ E1), and in fact an underlying logical language employing standard
negation could be used to model sets of attacking arguments (i.e. E1 ∧ E2 ⇒
¬concl(E5) with attack relations ¬concl(A) � A for all arguments A with con-
clusion concl(A)), but we chose not to go this route for a number of reasons.
Primarily, it adds another level of interdependencies between arguments, which
makes it hard to survey the effects of one set of argument on others and calls
for more specialised formalisms for analysis than Dung’s. Moreover, examples
of joint undercutting attacks seem to be inherently argumentative in nature,
and only obscurely encoded in an implicative manner. Consider the following
arguments, for instance:

F1 “The Bible says that God is all good, so God is all good”,
F2 “The Bible was written by human beings”, and
F3 “Human beings are not infallible”.

F2 and F3 attack the validity of F1, but clearly it makes no sense to encode this as
F2 ∧ F3 ⇒ ¬concl(F1) as the facts that human beings are not to be considered
infallible and that some of them just happened to write the Bible, do not entail
that God is not all good. To capture the intended meaning of the attack, one would
have to add an explicit presumption, like “The Bible can be trusted on all matters”
to F1, and allow for such assumptions to be targets of attacks, which — besides
requiring identification of all such implicit assumptions — can hardly be said to
be as elegant as allowing attacks at the argumentative level.

Another reason for preferring sets of attacking arguments, rather than pseudo
arguments constructed through application of an “and” connective, has to do
with Dung’s original aims. In [20], he stresses twice that he aims to build a
framework that allows for understanding all aspects of arguments among hu-
mans. It is often the case that humans argue jointly, and individual arguments
are defeated by a joint set of arguments initially carried by different individuals.
For instance, assume that persons A and B are engaged in the following dispute:

A1 “Your Porsche looks purple, so you drive a purple car”,
B1 “I drive an Aston Martin”, and
A2 “Alright, your car looks purple, so you drive a purple car”.

At this point, a third person, C, interferes:

C1 “Aston Martin has never produced purple cars”.
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Now the set of arguments consisting of A1 and C1 jointly attack B2, but they
were not stated by the same person. So if this dispute should be modeled in an
argumentation framework that does not allow for joint attacks, C would have
to repeat a previously stated argument, which is not only inelegant, but also
forces C to implicitly acknowledge A1 — at least to the same degree as other
arguments C has uttered. This latter aspect can be problematic when a person,
A, attempts to show another person, B, that a previously stated argument Bi

ends up attacking other arguments previously stated by B, when some of A’s
arguments are added to Bi. In such situations, the very aim of A would often be
to demonstrate that Bi is unreasonable, and therefore it would be unfortunate
for A to be forced to utter Bi himself.

Finally, some concrete problems with encoding joint attacks through pseudo
arguments: We cannot have attacks by arbitrary (including infinite) sets of argu-
ments. Furthermore, in most formal agent protocols for argumentation, agents
are prohibited from repeating already stated arguments, to ensure completion of
dialogue. When joint attacks are encoded as pseudo arguments, a dispute such
as the one between A, B, and C above, would force the agent stating the final
argument of an attacking set of arguments to repeat the previously stated ar-
guments as part of its pseudo argument. When this need must be allowed for,
completion guarantees are lost. Finally, the traditional approach hides symme-
try in some argumentation systems for methods for computing some semantics
(see [25])2.

Having argued for the necessity of allowing a set of arguments to attack an-
other argument, we now examine settings, where an entire set of arguments is
attacked by either a single argument or another set of arguments. Without loss
of generality (WLOG), we assume that what is needed is an attack

{A1, . . . , An} � {B1, . . . , Bm} ,

such that the validity of all the A-arguments prevents the B-arguments from
being valid. There are two distinct manners in which this can be interpreted:

1. Either the validity of the A-arguments means that each Bi cannot be valid,
no matter the validity of the other B-arguments, or

2. the validity of the A-arguments mean that not all of the B-arguments can
be valid at the same time.

Verheij [27] refers to these as “collective” and “indeterministic defeat”, respec-
tively — a terminology we adopt in this text.

As an example consider the following twist on the story about Jack, Joe, and
the antique coffee table:

E7 “Jack has been telling lies about Joe to Jill”
E8 “Jack is a rabbit”
E9 “Joe loves all animals”

2 Those swayed more by practical considerations than examples should note that the
original motivation for this work was to allow arguments about Bayesian networks,
in which sets of attacking arguments very naturally occur (see [26]).
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If E8 is a valid argument, then none of the arguments in the set {E3, E7} can
be valid: E3 because rabbits do not own antique coffee tables, and E7 because
rabbits, being unable to speak, do not lie. This is thus an example of collective
defeat. As an example of indeterministic defeat, E9 attacks the set of arguments
{E1, E8} seen as a set: E1 and E8 cannot both be valid arguments if Joe loves
all animals. However, both E1 and E8 can be valid seen as individual arguments,
no matter how Joe feels about animals.

We claim that it is never necessary to specify a nonsingleton set of arguments
as attacked, as in {A1, . . . , An} � {B1, . . . , Bm}: If collective defeat is taken to
heart, the attack can be reformulated as a series of attacks

{A1, . . . , An} � B1
...

{A1, . . . , An} � Bm .

It is easily seen that the above attacks would imply the attack, which is intended,
as the validity of the A-arguments would ensure that none of the B-arguments
are valid.

If instead indeterministic defeat is required, the attack can be reformulated
as

{A1, . . . , An, B2, . . . , Bm} � B1 ,
{A1, . . . , An, B1, B3, . . . , Bm} � B2 ,

...
{A1, . . . , An, B1, . . . , Bm−1} � Bm ,

which ensures that in case the A-arguments are valid, then B1 cannot be a valid
argument if the remaining B-arguments are also valid, thus preventing the entire
set of B-arguments from being valid at once, if the A-arguments are valid. In
the example above, we would state that {E8, E1} attacks E9. Notice that this
“trick” is not dependent on the actual structure or language of the arguments,
nor does it require the introduction of a new dummy argument, as was the case
if only single arguments were allowed as attackers3.

In summary, we have argued for the insufficiency of Dung’s treatment, when
sets of arguments are taken into account, and that an attack relation that allows
for sets of arguments attacking single arguments is sufficient to capture any kind
of relation between sets of arguments.

3 Argumentation with Attacking Sets of Arguments

In this section we present our generalisation of the framework of [20]. The main
motivation for the rigorous treatment is to verify that the suggested generalisa-
tion indeed is a generalisation, and that works building on the original framework
3 In disjunctive normal programming the operation suggested here is known as a “shift

operation” [28]. See Sect. 4 for more on the relation between disjunctive normal
programming and argumentation.
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can be extended to build on the new framework without fear of problems arising
from incompatibilities. In an effort to ease comparison with the original paper,
we have added the name of definitions, lemmas, and theorems in [20], to their
counterparts in this chapter. Furthermore, we have omitted proofs where the
original proofs of [20] suffice. As a result of the tight integration with [20] most
definitions and results have been worded in a nearly identical manner, even if
the proofs are different and the meaning of some words is new. Those definitions
and results that differ essentially from their counterparts in [20], or which are
entirely new, have been marked with an asterisk (*). The rest are identical to
those in [20].

Throughout the presentation, it should be clear that the framework presented
here reduces to that of [20] if only singleton sets are allowed as attackers.

Definition 1 (Argumentation System*).4 An argumentation system is a
pair (A, �), where A is a set of arguments, and � ⊆ (2A \ {∅})× A is an attack
relation.

We say that a set of arguments B attacks an argument A, if there is B′ ⊆ B
such that B′ � A. In that case we also say that A is attacked by B. If there
is no set B′′ � B′ such that B′′ attacks A, then we say that B′ is a minimal
attack on A. Obviously, if there exists a set that attacks an argument A, then
there must also exist a minimal attack on A. If for two sets of arguments B1
and B2, there is an argument A in B2 that is attacked by B1, then we say that
B1 attacks B2, and that B2 is attacked by B1.

Definition 2 (Conflict-free Sets*).5 A set of arguments B, is said to be
conflict-free if it does not attack itself, i.e. there is no argument A ∈ B, such
that B attacks A.

Let B1 and B2 be sets of arguments. If B2 attacks an argument A, and B1
attacks B2, then we say that B1 is a defense of A from B2, and that B1 defends
A from B2. Obviously, if B3 is a superset of B1, B3 is also a defense of A
from B2.

Example 1 (An Introductory Example). Consider an argumentation system Ae =
(Ae, �e), where Ae = {A, B, C, D, E, F} and �e is defined as:

{A, C, D} �e B, {A, B} �e C, {B} �e D, {C, E} �e D ,

{D} �e E, {B, F} �e E, {A} �e F, and {D} �e F .

We have that Ae attacks each argument except A, however, it is not a minimal
attack on any argument. Similarly, {B, C, E} is an attack on D but only the
subsets {B} and {C, E} are minimal attacks. {D} defends itself from {C, E},
but needs the assistance of A and C to be defended from {B, C, E}. Finally,
there exists no defense of F from any set including A.

4 Dung: Definition 1.
5 Dung: Definition 2.
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This basically covers the syntax and terminology of the argumentation systems
that we shall work with. The rest of the section will be devoted to describing
various semantics and how to compute them. In general, the set of arguments
identified as acceptable by a particular semantics in a specific context will be
called an extension.

Definition 3 (Acceptable and Admissable Arguments*).6 An argument
A is said to be acceptable with respect to a set of arguments B, if B defends A
from all attacking sets of arguments in A.

A conflict-free set of arguments B is said to be admissible if each argument
in B is acceptable with respect to B.

Intuitively, an argument A is acceptable with respect to some set B, if one can
defend A against all attacks using just the arguments in B. If a set of arguments
is admissible, it means that anyone believing this set of arguments as valid is
not contradicting himself and can defend his beliefs against all attacks.

Definition 4 (Preferred Semantics).7 An admissible set P is called a pre-
ferred extension if there is no admissible set B ⊆ A, such that P � B.

Building on the intuition from before, taking on a preferred extension as your
beliefs thus means that you would not be able to defend any more arguments
without contradicting yourself.

Example 2. Referring back to Ae defined in Example 1, we have that A is an ac-
ceptable argument with respect to (wrt) any set of arguments, and in particular,
that {A} is an admissible set. It is not a preferred extension, though. {A, C, D}
and {A, B, E} are both preferred extensions, as can be checked by verifying that
each defends each of its members, that it is conflict-free, and that this holds for
no proper superset of the set.

The basic result all semantics are based on is the following:

Lemma 1 (Fundamental Lemma).8 Let B be an admissible set, and A and
B be arguments that each are acceptable with respect to B, then

1. B′ = B ∪ {A} is admissible, and
2. B is acceptable with respect to B′.

Proof. 1) As B is admissible, and A is acceptable with respect to B, it is obvious
that B, and therefore also B′, defends each argument in B′. Thus we only need
to prove that B′ is conflict-free. Assume not. Then there is an argument B ∈ B′

and an attack B′′ ⊆ B′ on B. Since each argument in B′ is defended by B it
follows that B attacks B′′.

As B attacks B′′ it follows that B must attack at least one argument of B′′.
Let C be this argument. We consider two cases: First C = A and second C �= A.
6 Dung: Definition 3.
7 Dung: Definition 4.
8 Dung: Lemma 1.
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If C = A then it follows that B attacks A. As A is acceptable with respect to
B, B must then necessarily attack B, which contradicts the assumption that
B is conflict-free. Assume then that C �= A. Then C must be part of B, and
consequently B attacks B yielding the same contradiction with the assumptions.

2) Obvious.

Note that Bullet 2 of the lemma holds even if B is not admissible and/or A is
not acceptable wrt B.

Using Lmm. 1 the following important result, guaranteeing that an admissible
set can be extended to a preferred extension, can be proven.

Theorem 1.9 For any argumentation system the set of admissible sets forms a
complete partial order with respect to set inclusion, and for each admissible set
B there exists a preferred extension P , such that B ⊆ P .

As the empty set is an admissible set, we have:

Corollary 1.10 Every argumentation system has at least one preferred
extension.

Moreover,

Corollary 2 (*). Let P be a preferred extension, and let A be an argument
defended by P . Then A is in P .

A more aggressive semantics is the stable semantics:

Definition 5 (Stable Semantics).11 A conflict-free set S is a stable extension
if S attacks all arguments in A \ S.

Simple examples of stable extensions, are the preferred extensions {A, B, C} and
{A, C, D} for the argumentation system Ae presented in Example 1. The name,
stable extension, is ultimately rooted in stable expansions for autoepistemic
logics, which are called “stable” as they represent states of belief in which no
further conclusions can be drawn by a rational agent.

Lemma 2.12 S is a stable extension if and only if (iff) S = {A : A is not
attacked by S}.

Proof. “only if”: Obvious.
“if”: Assume not. Then S is either not conflict-free, or there is an argument

in A \ S not attacked by S. The latter possibility is precluded by the definition
of S, so there must be a set S′ ⊆ S and an argument A ∈ S such that S′ attacks
A. But then S also attacks A, which contradicts the definition of S.

The general connection between stable and preferred semantics is given by the
following result:
9 Dung: Theorem 1.

10 Dung: Corollary 2.
11 Dung: Definition 5.
12 Dung: Lemma 3.
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Lemma 3.13 Every stable extension is a preferred extension, but not vice-versa.

Example 3. Consider an argumentation system consisting of a single argument,
which attacks itself. The empty set is a preferred extension in this argumentation
system, yet clearly it is not a stable one.

Both preferred and stable semantics are credulous in the sense that they rep-
resent beliefs that include as much as possible. Next, we consider semantics
corresponding to more skeptical points of views. For this we need the notion of
a characteristic function, and some general results on this:

Definition 6 (Characteristic Function).14 The characteristic function of an
argumentation system is the function F : 2A → 2A defined as

F (B) = {A : A is acceptable wrt B} .

Next, we state a couple of properties of the characteristic function F . The first
result is not explicitly stated in [20], but included only as part of a proof. We
make it explicit here as it is a property required of F by several proofs in [20]
that have been left out of this text.

Lemma 4 (*). If B is a conflict-free set, then F (B) is also conflict-free.

Proof. Assume this is not the case, then there is B′ ⊆ F (B) and A ∈ F (B)
such that B′ attacks A. Since A is acceptable wrt B, B must attack at least
one element B of B′. But since B is in F (B) it must be acceptable wrt B, and
B must consequently attack itself. This contradicts the assumption that B is a
conflict-free set.

Lemma 5.15 A conflict-free set B is admissible iff B ⊆ F (B).

Proof. “only if”: All arguments of B are acceptable wrt B, so B ⊆ F (B).
“if”: As B ⊆ F (B) it follows that all arguments of B are acceptable wrt B.

Lemma 6.16 F is a monotonic function with respect to set inclusion.

Proof. Obvious, cf the remark after Lmm. 1.

Now, we can introduce the most skeptical semantics possible:

Definition 7 (Skeptical Semantics). 17 The grounded extension of an
argumentation system, is the least fixpoint of the corresponding characteristic
function.

13 Dung: Lemma 4.
14 Dung: Definition 6.
15 Dung: Lemma 5.
16 Dung: Lemma 6.
17 Dung: Definition 7.
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A grounded extension is thus the set of arguments that are not challenged by any
other arguments, along with the arguments defended by these arguments, those
defended by those, and so on. Dung [20] does not prove that the grounded ex-
tension of an argumentation system is well-defined, but it is a property following
from the monotonicity of F and the Knaster-Tarski theorem [29]:

Lemma 7 (*). If G1 and G2 are both grounded extensions of an argumentation
system, then G1 = G2.

Example 4. In Example 2 we noted that A was acceptable to all sets in the argu-
mentation system Ae. Specifically, this holds for the empty set. A in itself does
not defend any other arguments against all attacks, so the grounded extension
of Ae is {A}.

As a common class, encompassing all the semantics we have discussed so far, we
have complete extensions:

Definition 8 (Complete Extensions).18 An admissible set C is called a com-
plete extension, if all arguments that are acceptable with respect to C are
in C.

Intuitively, complete extensions are sets for which no arguments have been “left
out”, i.e. if more members are to be included they will have to participate in
defending themselves. The only examples of complete extensions of the example
argumentation system Ae are {A}, {A, B, E}, and {A, C, D}.

A couple of results tie the complete extension semantics to the other semantics
we have discussed:

Lemma 8.19 A conflict-free set C is a complete extension iff C = F (C).

Theorem 2.20 Extensions are such that:

1. Each preferred extension is a complete extension, but not vice-versa.
2. The grounded extension is the least complete extension with respect to set

inclusion.
3. The complete extensions form a complete semi-lattice with respect to set

inclusion.

From Bullets 2 and 3 we have that in any argumentation system, the grounded
extension is a subset of each preferred extension.

Example 5. That the inclusion can be proper, can be seen by considering an
argumentation system consisting of four arguments A, B, C, and D, where

{A} � B, {B} � A, {A} � C, {B} � C, and {C} � D .

Here the two preferred extensions are {A, D} and {B, D}, but the grounded
extension is the empty set.
18 Dung: Definition 8.
19 Dung: Lemma 7.
20 Dung: Theorem 2.
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Next, we investigate classifying argumentation systems according to desirable
properties of their corresponding semantics.

Definition 9 (Finitary System*).21 An argumentation system is said to be
finitary if for each argument A, there is at most a finite amount of minimal
attacks on A, and each minimal attack is by a finite set of arguments.

As the example system Ae consists of finitely many arguments, it is trivially
finitary.

Lemma 9.22 For any finitary system, F is ω-continuous.23

Proof. Let B1 ⊆ B2 ⊆ · · · be an increasing series of sets of arguments, and
B = ∪iBi. We need to show that F (B) = ∪iF (Bi). As adding arguments to a
set cannot reduce the set of arguments attacked by this set, and therefore cannot
reduce the set of arguments that are acceptable with respect to it, we have that
F (Bi) ⊆ F (B) for each i, and thus F (B) ⊇ ∪iF (Bi).

To see that F (B) ⊆ ∪iF (Bi), consider an argument A ∈ F (B), and let
D1, . . . , Dn be the finitely many minimal attacks on A. As B attacks each
attack on A, there must be an argument Bi in each Di, which is attacked by B.
Let Ei ⊆ B be the minimal attack of Bi. As each minimal attack consists of a
finite number of arguments, the set E = E1 ∪ · · · ∪ En is finite as well, and thus
there must be a j, such that E ⊆ Bj. Consequently, A must be in F (Bj) and
therefore also in ∪iF (Bi).

Definition 10 (Well-founded System*).24 An argumentation system is well-
founded, if there exists no infinite sequence of sets B1, B2, . . ., such that for all i,
Bi is a minimal attack on an argument in Bi−1.
Ae is not well-founded, as can be seen from the chain of sets of arguments
{D}, {C, E}, {D}, . . ., where each entry in the chain is a minimal attack on a
member of the entry before it.25

Theorem 3.26 Every well-founded argumentation system has exactly one com-
plete extension, which is grounded, preferred, and stable.

Proof. It suffices to prove that the grounded extension G is stable. Assume this
is not the case, and let

B = {A : A /∈ G and A is not attacked by G} ,

which must be nonempty if the grounded extension is not stable. We prove that
each argument A in B is attacked by a minimal set B′ such that B ∩ B′ �= ∅,
and therefore that the system cannot be well-founded.
21 Dung: Definition 9.
22 Dung: Lemma 8.
23 A function defined on 2A is ω-continuous if for all series of sets B1 ⊆ B2 ⊆ · · · , we

have ∪iF (Bi) = F (∪iBi).
24 Dung: Definition 10.
25 Well-founded systems are the argumentation equivalent of stratified logical programs,

which are known to be solvable in polynomial time.
26 Dung: Theorem 3.
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Since A is not in G it is not acceptable with respect to G. Therefore there
must be a minimal attack D of A, not itself attacked by G. Since G does not
attack A, at least one element of D must be outside of G. Let D′ be D \ G,
which is thus nonempty. As G does not attack D, it furthermore follows that
D′ must be a subset of B. Thus, D is the set B′ we were looking for, and the
proof is complete.

Definition 11 (Coherent and Relatively Grounded System).27 An argu-
mentation system is coherent if all its preferred extensions are stable. A system
is relatively grounded if its grounded extension is the intersection of all its pre-
ferred extensions.

Ae is both coherent and relatively grounded, as can be seen from Example 2,
the note following Definition 5, and Example 4.

Let A1, A2, . . . be a (possible finite) sequence of arguments, where each ar-
gument Ai is part of a minimal attack on Ai−1. Then the arguments {A2i}i≥1
are said to indirectly attack A1. The arguments {A2i−1}i≥1 are said to indi-
rectly defend A1. If an argument A is both indirectly attacking and defending
an argument B, then A is said to be controversial with respect to B, or simply
controversial.

Definition 12 (Uncontrovertial and Limited Controversial System).28

An argumentation system is uncontroversial if none of its arguments are con-
troversial. An argumentation system, for which there exists no infinite sequence
of arguments A1, A2, . . ., such that for all i, Ai is controversial with respect to
Ai−1, is said to be limited controversial.

Obviously, an uncontroversial argumentation system is also limited controversial.

Example 6. Consider again Ae. Note that B (together with A) participates in a
minimal attack on C, but also (by itself) on D. Since C itself participates in a
minimal attack on D together with E, we thus have that B is controversial wrt
D, and hence that Ae is not uncontroversial. In fact C is also controversial wrt
D, D itself is controversial wrt E, and A is controversial wrt C. But the chain
ends here, as E is not controversial wrt any arguments, and no arguments are
controversial wrt A. So Ae is limited controversial.

Lemma 10.29 In every limited controversial argumentation system there exists
a nonempty complete extension.

Proof. We construct the nonempty complete extension C. Since a nonempty
grounded extension would suffice, we assume that it is empty. Since the system
is limited controversial, every sequence of arguments, where Ai is controversial
with respect to Ai−1, must have a last element, B. It follows that there is no
argument that is controversial with respect to B. We define B0 to be {B}, and
27 Dung: Definition 11.
28 Dung: Definition 12.
29 Dung: Lemma 9.
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Bi to be Bi−1∪Di, where Di is a minimal set that defends Bi−1 from A\Bi−1,
for all i ≥ 1. As the grounded extension is empty, each argument is attacked by
some other argument, and therefore each Di is guaranteed to exist.

We then prove by induction that, for each i ≥ 0, Bi is conflict-free and each
argument in Bi indirectly defends B.

The hypothesis trivially holds true for i = 0. We assume it to be true for
i − 1 and show that it also must be true for i: From the induction hypothesis
we know that Bi−1 consists of arguments that indirectly defends B. As each
argument in Di participates in attacking an argument, which participates in an
attack on an argument in Bi−1, each of these must also indirectly defend B, and
consequently this is true of all arguments in Bi. Assume then that Bi is not
conflict-free. Then there is a set of arguments E ⊆ Bi, that attack an argument
C ∈ Bi. But then the arguments in S are attacking an indirect defender of B,
and thus are indirect attackers of B. This mean that the arguments in E are
controversial with respect to B, violating the assumptions of the lemma. Thus,
the induction hypothesis is proved.

Next, let B = ∪iBi. We prove that this set is admissible, and then let C be
the least complete extension containing B. We know such an extension exists as
by Thm. 1 a preferred extension containing B must exists, and from Thm. 2 that
extension must be a complete extension. To see that B is admissible, first let
C ∈ B be an argument. There must be some i, such that C ∈ Bi, and therefore
a defense of C must be in Di, and consequently in Bi+1. But then that defense
is also in B, and hence C must be acceptable with respect to B. To see that
B is conflict-free assume that it contains C and E, such that E attacks C. As
each argument of E must be an element of some set Bi, it follows that each of
these indirectly defend B. But as C also indirectly defends B, each element of E
must indirectly attack B also, and is thus controversial with respect to B. But
this violates the assumption that no argument is controversial with respect to
B, and there can therefore be no such E and C.

Lemma 11.30 For any uncontroversial system, with an argument A that is nei-
ther a member of the grounded extension nor attacked by it,

1. there exists a complete extension containing A, and
2. there exists a complete extension that attacks A.

Proof.
1) Similar to the proof in [20].
2) Proof by construction. Since A is not part of the grounded extension G,
nor attacked by it, it is attacked by some minimal set of arguments B, such
that B �⊆ G and G does not attack B. As the system is uncontroversial, it is
impossible for any members of B to constitute a minimal attack on B, so the set
B is conflict-free. Following a process similar to the one in the proof of Lmm. 10,
substituting B for {B}, we can build a series of conflict-free sets that consists
of arguments that indirectly attack A. Extending the union of these sets to a
complete extension provides the sought extension.
30 Dung: Lemma 10.
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Theorem 4. 31 Every limited controversial system is coherent, and every un-
controversial system is also relatively grounded.

Corollary 3. 32 Every limited controversial argumentation system possesses at
least one stable extension.

This ends our derivation of results mirroring those in [20]. Dung [20] furthermore
provides a series of results, showing how some formalisms are special cases of
his framework. As Dung’s framework itself is a special case of our framework, it
follows that these formalisms are also special cases of our framework.

Dung [20] ends his treatment with a procedure that turns any finitary argu-
mentation system, as defined in [20], into a logic program, and thereby provides
a tractable means for computing grounded extensions of such systems. As our
framework is more general, it does not allow for Dung’s procedure to be used
directly. Instead we provide the following procedure for finitary systems: Given a
finitary argumentation system (A, �), we define a Prolog encoding of this system
as the clauses

{attacks([B], A) ← : B � A} ,

where [B] is a Prolog list declaration containing the arguments in B.
Furthermore, a general interpreter for a Prolog encoding of a finitary argu-

mentation system, is defined as:

{acceptable(X) ← ¬defeated(X);
defeated(X) ← attacks(Y, X), acc(Y );
acc(X |Y ) ← acceptable(X),acc(Y );
acc(X) ← acceptable(X); } .

4 Related Work

The principle of synergy among arguments is not new, and neither is the idea of
generalising the framework of Dung [20] to incorporate this. Of immediate inter-
est is the work of Bochman [30], who also describes an argumentation framework
that is a generalisation of that in [20]. The main differences between [30] and
and the work presented here are due to difference in perspectives: Bochman is
mainly motivated by the task of establishing a semantics for disjunctive logic
programming using abstract argumentation, and ends up with a framework that
allows any finite set of arguments (including the empty set) to attack and be
attacked by any other finite set. We, on the other hand, have tried to expand the
dialogical and dialectical boundaries of abstract argumentation by allowing for
arbitrary sets of attacking arguments (except for the empty set), and claim that
further flexibility is not needed for argumentative reasoning. (Indeed, the main
example of in [30] motivating attacks on entire sets of arguments turns out to

31 Dung: Theorem 4.
32 Dung: Corollary 11.



A Generalization of Dung’s Abstract Framework for Argumentation 69

be sensibly represented in our framework.) Due to his aims, Bochman construct
new semantics for his framework and identifies new families of argumentation
systems with nice properties (none of them coinciding with our formalism). We,
on the other hand, stick as close as possible to the semantics provided by Dung,
and instead show that all of Dung’s results are valid for systems with sets of
attacking arguments — results that are of no importance for reasoning about
disjunctive logic programs, and hence for Bochman [30].

While strictly speaking, the work of [30] is closest to the results presented here,
some previous works, most notably the efforts of Verheij, are closer in spirit by
being rooted in dialectical argumentation while allowing for sets of attacking
arguments (although often as side effects to other concerns and without any
explicit analysis of the fundamental problem of Dung’s framework). None of
these solutions can be said to be conservative generalisations33 of the framework
in [20], though.

First and most similarly, Verheij [27] provided a framework, CumulA, with an
attack relation that allows sets of arguments to attack other sets. The framework
is focused on modeling the actual dialectic process of argumentation, however,
rather than investigating the essentials of justified and acceptable arguments,
and perhaps as a consequence of this, the semantics presented by Verheij is nei-
ther as clear as Dung’s, nor does it allow for simple comparisons with other
formalisms. Furthermore, there are some flaws in Verheij’s treatment, which ef-
fectively leave CumulA with no appealing semantics. Specifically, three require-
ments on allowed extensions turn out to prevent seemingly sensible systems from
being analysed, and the semantics associated with an attack on sets of arguments
is context dependent.34 Later, Verheij developed two additional frameworks that,
in principle, allow for sets of attacking arguments, viz Argue!, described in [32],
and the formal logical framework of DefLog, described in [33] and implemented
in [34]. Even though these frameworks builds on ideas from CumulA, they avoid
the problems associated with that framework by abandoning the process-based
semantics.

However, the two frameworks have other shortcomings that make us prefer
a conservative generalisation of Dung’s framework: Argue! employs only a step-
based procedural semantics, and thus lacks the analytical tools, theoretic results,
and scope of [20]. DefLog, on the other hand, is well-investigated, but lacks a
skeptical semantics, and allows sets of attacking arguments only as a rather
contrived encoding, and in essence not as a set of arguments but as a single
argument. For instance, the attack {A, B} � C would be encoded as a single
argument

{A, B, A � (B � ×(C))} ,

consisting of three sentences A, B, and A � (B � ×(C)), leading to an argu-
ment using the semantical connectives � (denoting primitive implication) and
×(·) (denoting defeat of its argument). Given this construction, any argument

33 “Conservative” meaning a generalisation that makes the minimum changes to the
Dung framework necessary to allow it to handle sets of attacking arguments.

34 For more on these problems see [31].
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that coexists with the sentence A � (B � ×(C)), and includes sentences A and
B must necessarily fail to include sentence C.

There are three problems with this encoding, one conceptual, one technical,
and one aesthetic: The first is that the attack is really encoded as a single
argument (namely the set consisting of the sentences A, B, and A � (B �

×(C))), and the relationships between arguments are thus intermingled with
the construction of these. The second that systems involving infinite sets of
attacking arguments cannot be analysed. Finally, the symmetry of the set of
attackers is broken. Consider for instance the case where A is “X weighs less
than 80 kg”, B is “X is taller than 180 cms”, and C is “X is obese”: Encoding
the fact that A and B together defeat C as “X weighs less than 80 kg” implies
that “X is taller than 180 cms, so X is not obese” seems to us to be inelegant,
and the larger the set of attackers, the more protrusive the inelegance.

The power of encoding sets of attacking arguments wielded by DefLog is due
to its expressive language for building arguments, which is closed under both
an implicative operator and an negative operator. Some other argumentation
frameworks that are based on formal languages employing similar operators also
have implicit or latent methods for encoding attacks by sets of arguments. Most
notable is the framework presented in [35], which allows for sets of sentences
to attack each other by encoding rules that from each of them lead to a con-
tradiction. Undercutting attacks are, however, not expressible without further
assumptions on the underlying language. Bondarenko, Dung, Kowalski, and Toni
[9] and Garcia and Simari [36] present frameworks based on similar ideas. All of
these do not abstract from the structure of arguments, though, and as a result
do not clearly distinguish between arguments and their interactions, unlike the
frameworks of [20] and the approach presented here. Moreover, the approach
restrains sets of attackers to be finite.

Rounding off the discussion on previous frameworks, we mention that synergy
among arguments has previously been debated in connection to “accrual of argu-
ments” or “accrual of reasons” (see e.g. [27,37,38]), where several arguments that
each represent a weak attack on some other argument, together can represent a
stronger attack. The difference between that discussion and the issue addressed
here is that we (and Dung) do not consider arguments as having a numerical
strength, and a set of individually defeated arguments can thus not accrue to
become undefeated, unless that set is explicitly specified to defeat each argu-
ment defeating its individual members. The generalization of Dung’s framework
presented in [22] does add differences in strength to arguments in the form of
a preference ordering, and we conjecture that it is relatively straightforward to
extend the framework presented here with such preferences among arguments.
Still the result would not allow for accrual of arguments.

5 Conclusions

In this paper we have started exploring formal abstract argumentation systems
where synergy can arise between arguments. We believe that we have argued
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convincingly for the need for such systems, and have examined some of the
semantics that can be associated with them. We have tried to do this in the
most general fashion possible, by starting from the abstract frameworks of [20],
and creating a new formalization that allows for sets of arguments to jointly
attack other arguments. As we argued in Sect. 2 this degree of freedom ensures
that all kinds of attacks between arguments can be modelled faithfully.
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Abstract. We build on recent work on argumentation frameworks for
generating desires and plans. We provide a rich instantiation of Dung’s
abstract argumentation framework for (i) generating consistent desires;
and (ii) generating consistent plans for achieving these desires. This is
done through three distinct argumentation frameworks: one (now stan-
dard) for arguing about beliefs, one for arguing about what desires the
agent should adopt, and one for arguing about what plans to intend in or-
der to achieve the agent’s desires. More specifically, we refine and extend
existing approaches by providing means for comparing arguments based
on decision-theoretic notions (cf. utility). Thus, the worth of desires and
the cost of resources are integrated into the argumentation frameworks
and taken into account when comparing arguments.

1 Introduction

Various frameworks have been proposed for formalising and mechanising the rea-
soning of autonomous software agents based on mental attitudes such as beliefs,
desires and intentions (BDI). These range from theoretical models of mental atti-
tudes using modal logics [13], to operational agent architectures such as AgentS-
peak [5] and 3APL [8]. A central feature of reasoning with mental attitudes is
that conflict may arise between various attitudes.

Argumentation is a promising approach for reasoning with inconsistent infor-
mation, based on the construction and the comparison of arguments [6]. The
basic idea is that it should be possible to say more about the certainty of a
particular fact than just assessing a probabilistic certainty degree in the interval
[0, 1]. In particular, it should be possible to assess the reasons (i.e. arguments)
why a fact holds, and to combine and compare these arguments in order to reach
a conclusion. The process of argumentation may be viewed as a kind of reason-
ing about arguments (considering attacks and conflicts among them, comparing
their strengths etc.) in order to determine the most acceptable of them. Various
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argument-based frameworks have been developed in defeasible reasoning [12] for
generating and evaluating arguments.

Classicaly, argumentation has been mainly concerned with theoretical rea-
soning: reasoning about propositional attitudes such as knowledge and belief.
Recently, a number of attempts have been made to use argumentation to cap-
ture practical reasoning: reasoning about what to do. This requires capturing
arguments about non-propositional attitudes, such as desires and goals. Some
argument-based frameworks for practical reasoning are instantiations of Dung’s
abstract framework [6] (e.g. [1,3,9]). Others are operational and grounded in
logic programming (e.g. [10,14]).

In this paper, we build on recent work on argumentation frameworks for gen-
erating desires and plans [1,3,9]. We provide a rich, argumentation-based frame-
work for (i) generating consistent desires; and (ii) generating consistent plans
for achieving these desires. This is done through three distinct argumentation
frameworks: one (now standard) for arguing about beliefs, one for arguing about
what desires the agent should adopt, and one for arguing about what plans to
intend in order to achieve the agent’s desires. More specifically, we refine and
extend existing approaches by providing means for comparing arguments based
on decision-theoretic notions (cf. utility). Thus, the worth of desires and the cost
of resources are integrated into the argumentation frameworks and taken into
account when comparing arguments.

The paper is organised as follows. After some formal preliminaries in the next
section, we present our three integrated argumentation frameworks in Section 3.
We discuss related work in Section 4 and conclude in Section 5.

2 Preliminaries

In this section we start by presenting the logical language which will be used
throughout this paper, as well as the different mental states of the agents (their
bases).

Let L be a propositional language, � stands for classical inference and ≡
for logical equivalence. From L we can distinguish the three following sets of
formulas:

– The set D which gathers all possible desires of agents.
– The set K which represents the knowledge.
– The set RES which contains all the available resources in a system.

From the above sets, two kinds of rules can be defined: desire-generation rules
and planning rules.

Definition 1 (Desire-Generation Rules). A desire-generation rule (or a de-
sire rule) is an expression of the form

ϕ1 ∧ · · · ∧ ϕn ∧ ψ1 ∧ · · · ∧ ψm ⇒ ψ

where ∀ ϕi ∈ K and ∀ ψi, ψ ∈ D.
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The meaning of the rule is “if the agent believes ϕ1, . . . , ϕn and desires ψ1, . . . , ψm,
then the agent will desire ψ as well”. And let head(ϕ1 ∧· · ·∧ϕn ∧ψ1 ∧· · ·∧ψm ⇒
ψ) = ψ.

Let’s now define the notion of planning rule, which is the basic building block
for specifying plans.

Definition 2 (Planning Rules). A planning rule is an expression of the form

ϕ1 ∧ · · · ∧ ϕn ∧ r1 · · · ∧ rm � ϕ

where ∀ ϕi ∈ D, ϕ ∈ D and ∀ri ∈ RES.

A planning rule expresses that if ϕ1, . . . , ϕn are achieved and the resources r1,
. . . , rm are used then ϕ is achieved.1

Let DGR and PR be the set of all possible desire generation rules and planning
rules, respectively. Each agent is equipped with four bases: a base Bb containing
its basic beliefs, a base Bd containing its desire-generation rules, a base Bp con-
taining its planning rules and finally a base R which will gather all the resources
possessed by that agent. Beliefs can be uncertain, desires may not have equal
priority and resources may have different costs.

Definition 3 (Agent’s bases). An agent is equipped with four bases 〈Bb, Bd,
Bp, R〉:
– Bb = {(βi, bi) : βi ∈ K, bi ∈ [0, 1], i = 1, . . . , n}. Pair (βi, bi) means belief βi

is certain at least to degree bi.2
– Bd = {(dgr i, wi) : dgr i ∈ DGR, wi ∈ R, i = 1, . . . , m}. Symbol wi denotes

the worth of the desire head(dgr ). Let Worth(ψ) = wi.
– Bp = {pr i : pr i ∈ PR, i = 1, . . . , l}.
– R = {(ri, ci), i = 1, . . . , n} where ri ∈ RES and ci ∈ R is the cost of

consuming ri. Let Cost(ri) = ci be a function which returns the cost of a
given resource.

In what follows, B∗b , B∗d, B∗p, R∗ will denote the sets of formulas when the weights
are ignored. Using desire-generation rules, we can characterise potential desires.3

Definition 4 (Potential Desire). The set of potential desires of an agent is
PD = {ψ : ∃ϕ1 ∧ · · · ∧ ϕn ∧ ψ1 ∧ · · · ∧ ψm ⇒ ψ ∈ B∗d}.
These are “potential” desires because the agent does not know yet whether the
antecedents (i.e. bodies) of the corresponding rules are true.

3 Argumentation Frameworks

The conceptual sketch of an argumentation framework is illustrated in Figure 1.
It is essential to distinguish between arguing over beliefs and arguing over goals
1 Note that the implications defined in desire-generation rules and planning rules are

not material. So for example, from ¬y and x � y, we cannot deduce ¬x.
2 The certainty degree can be seen as a necessity measure of possibility theory.
3 Amgoud and Kaci [3] call them “potential initial goals.”
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Bases

Arguments

Conclusions

Interaction among
arguments

Strengths of
arguments

Acceptable
arguments

Rejected
arguments

Others

Fig. 1. General view of argument-based decision making

or desires. A proposition is believed because it is true and relevant. Desires, on
the other hand, are adopted because they are justified and achievable. A desire
is justified because the world is in a particular state that warrants its adoption.
For example, one might desire to go for a walk because she believes it is a sunny
day and may drop that desire if it started raining. A desire is achievable, on the
other hand, if the agent has a plan that achieves that desire.

As a consequence of the different nature of beliefs and desires, they are sup-
ported by two different types of arguments. These arguments need to be treated
differently, taking into account the different way they relate to one another. For
example, a belief argument can be attacked by arguing that it is not consistent
with observation, or because there is a reason to believe the contrary. Arguments
for desires, on the other hand, could be attacked by demonstrating that the jus-
tification of that desire does not hold, or that the plan intended for achieving it
is itself not achievable.

To deal with the different nature of the arguments involved, we present three
distinct argumentation frameworks: one for reasoning about beliefs, another for
arguing about what desires are justified and should be pursued, and a third for
arguing about the best plan to intend in order to achieve these desires. The first
framework is based on existing literature on argumentation over beliefs, origi-
nally proposed by Dung [6] and later extended by Amgoud and Cayrol [2]. For
arguing about desires and plans, we draw on and extend work on argumentation-
based desire-generation and planning [1,3,9].

3.1 Arguing over Beliefs

Using beliefs, an agent can construct belief arguments, which have a deductive
form. Indeed, from a set of beliefs, another belief is deduced as follows:
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Definition 5 (Belief Argument)
A belief argument A is a pair A = 〈H, h〉 such that:

1. H ⊆ B∗b ;
2. H is consistent;
3. H � h;
4. H is minimal (for set ⊆) among the sets satisfying conditions 1, 2, 3.

The support of the argument is denoted by SUPP(A) = H. The conclusion of the
argument is denoted by CONC(A) = h. Ab stands for the set of all possible belief
arguments that can be generated from a belief base Bb.

In [2,11], it has been argued that arguments may have forces of various strengths,
and consequently different definitions of the force of an argument have been
proposed. Generally, the force of an argument can rely on the information from
which it is constructed. Belief arguments involve only one kind of information:
the beliefs. Thus, the arguments using more certain beliefs are found stronger
than arguments using less certain beliefs. A certainty level is then associated
with each argument. That level corresponds to the less entrenched belief used in
the argument. This definition is also used in belief revision [7].

Definition 6 (Certainty level). Let A = 〈H, h〉 ∈ Ab. The certainty level of
A is Level(A) = min{ai : ϕi ∈ H and (ϕi, ai) ∈ Bb}.

The different forces of arguments make it possible to compare pairs of argu-
ments. Indeed, the higher the certainty level of an argument is, the stronger
that argument is. Formally:

Definition 7 (Comparing arguments). Let A1, A2 ∈ Ab. The argument A1
is preferred to A2, denoted A1 �b A2, if and only if Level(A1) ≥ Level(A2).

Preference relations between belief arguments are used not only to compare
arguments in order to determine the “best” ones, but also in order to refine the
notion of acceptability of arguments. Since a belief base may be inconsistent,
then arguments may be conflicting.

Definition 8 (Conflicts between Belief Arguments)
Let A1 = 〈H1, h1〉, A2 = 〈H2, h2〉 ∈ Ab.

– A1 undercuts A2 if ∃h′2 ∈ H2 such that h1 ≡ ¬h′2.
– A1 attacksb A2 iff A1 undercuts A2 and not (A2 �b A1).

Having defined the basic concepts, we are now ready to define the argumentation
system for handling belief arguments.

Definition 9 (Belief Argumentation framework). An argumentation
framework AFb for handling belief arguments is a pair AFb = 〈Ab, Attackb〉
where Ab is the set of belief arguments and attackb is the defeasibility relation
between arguments in Ab.
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Since arguments are conflicting, it is important to know what are the “good”
ones, generally called acceptable. Beliefs supported by such arguments will be
inferred from the base Bb. Before defining the notion of acceptable arguments,
let’s first introduce a crucial notion of defence.

Definition 10 (Defence). Let S ⊆ Ab and A1 ∈ Ab. S defends A1 iff for every
belief argument A2 where A2 attacksb A1, there is some argument A3 ∈ S such
that A3 attacksb A2.

An argument is acceptable either if it is not attacked, or if it is defended by
acceptable arguments.

Definition 11 (Acceptable Belief Argument). A belief argument A ∈ Ab

is acceptable with respect to a set of arguments S ⊆ Ab if either:

– �A′ ∈ S such that A′ attacksb A; or
– ∀A′ ∈ S such that A′ attacksb A, we have an acceptable argument A′′ ∈ S

such that A′′ attacksb A′.

This recursive definition enables us to characterise the set of acceptable argu-
ments using a fixed-point definition.

Proposition 1. Let AFb = 〈Ab, Attackb〉 be an argumentation framework. And
let F be a function such that F(S) = {A ∈ Ab : S defends A}. The set Acc(Ab)
of acceptable belief arguments is defined as: Acc(Ab) =

⋃
Fi≥0(∅)

Proof. Due to the use of propositional language and finite bases, the argumen-
tation system is finitary, i.e each argument is attacked by a finite number of
arguments. Since the argumentation system is finitary then the function F is
continuous. Consequently, the least fixpoint of F is

⋃
Fi≥0(∅).

The set Acc(Ab) contains non-attacked arguments as well as arguments defended
directly or indirectly by non-attacked ones.

3.2 Arguing over Desires

Amgoud and Kaci have introduced explanatory arguments as a means for gen-
erating desires from beliefs [3]. We extend this framework in this section and
refine it in order to resolve some problematic features caused by the fact that
they combine belief argumentation with desire argumentation in a single frame-
work. Moreover, we consider more general desire generation rules in the sense
that a desire may not only be generated from beliefs as in [3], but it can also be
generated from other desires.

In what follows, the functions BELIEFS(A), DESIRES(A) and CONC(A) return
respectively, for a given argument A, the beliefs used in A, the desires supported
by A and the conclusion of the argument A.
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Definition 12 (Explanatory Argument). Let 〈Bb, Bd〉 two bases.

– If ∃(⇒ φ) ∈ B∗d then ⇒ φ is an explanatory argument (A) with:
BELIEFS(A) = ∅
DESIRES(A) = {φ}
CONC(A) = φ

– If B1, . . ., Bn are belief arguments, and E1, . . . , Em are explanatory argu-
ments, and ∃ CONC(B1) ∧ . . . ∧ CONC(Bn) ∧ CONC(E1) ∧ . . . ∧CONC(Em)
⇒ ψ ∈ B∗d then B1, . . . Bn, E1, . . . Em ⇒ ψ is an explanatory argument (A)
with:4

BELIEFS(A) = SUPP(B1)∪ . . .∪SUPP(Bn)∪BELIEFS(E1)∪ . . .∪BELIEFS(Em)
DESIRES(A) = DESIRES(E1) ∪ . . . ∪ DESIRES(Em) ∪ {ψ}
CONC(A) = ψ

TOP (A) = CONC(B1) ∧ . . .CONC(Bn) ∧ CONC(E1) ∧ . . . ∧
CONC(Em) ⇒ ψ is the TOP rule of the argument.
Let Ad denote the set of all explanatory arguments that can be generated from
〈Bb, Bd〉, and A = Ad ∪ Ab.

Example 1. Let waic ∈ K, aic ∈ D; waic denotes “there is a relevant workshop
at the Sydney AI conference;” aic denotes “attend the Sydney AI conference.”
Suppose we have:

Bb = {(waic, 0.8)}
Bd = {(waic ⇒ aic, 6)}
Bp = ∅
R = ∅

The agent can construct the explanatory argument A1 in favour of its desire to
attend the Sydney AI conference:

B1: 〈{waic},waic〉
A1: B1 ⇒ aic

with BELIEFS(A1) = {waic}, DESIRES(A1) = {aic}, CONC(A1) = {aic}.

Note that the above example involves a desire-generation rule that contains
beliefs only in its body. The following extended example shows how a desire can
follow from another, already generated desire.

Example 2. Extending example 1, let: keynote denote “interesting key note
speech”; attendkey denote “attend the key note speech”. Suppose we have the
following additional desire-generation rule, which states that if there is an inter-
esting keynote speech at a conference I already desire to attend, then I would
also desire to attend that speech: (keynote ∧ aic ⇒ attendkey , 8). Suppose also
that the agent believes that there is an interesting key note speech. Thus, we
have the following new bases:

Bb = {(waic, 0.8), (keynote, 0.7)}
4 Note that Bi and Ei are comma-separated argument labels, not a conjunction of

formulae (as in desire generation rules).
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Bd = {(waic ⇒ aic, 6), (keynote ∧ aic ⇒ attendkey , 8)}
Bp = ∅
R = ∅.

The agent can construct the explanatory argument A2 for the desire to attend
the keynote speech: B1: 〈{waic},waic〉

B2: 〈{keynote}, keynote〉
A1: B1 ⇒ aic
A2: B2, A1 ⇒ attendkey

with BELIEFS(A1) = {waic}, BELIEFS(A2) = {waic, keynote}, DESIRES(A1) =
{aic}, DESIRES(A2) = {aic, attendkey},
CONC(A1) = {aic} and CONC(A2) = {attendkey}.

As with belief arguments, explanatory arguments may have different forces. How-
ever, since explanatory arguments involve two kinds of information: beliefs and
desires, their strengths depend on both the quality of beliefs (using the notion
of certainty level) and the importance of the supported desire. Formally:

Definition 13 (The force of explanatory arguments). Let A ∈ Ad be an
explanatory argument. The force of A is Force(A) = <Level(A), Weight(A)>
where:

– Level(A) = min{ai : ϕi ∈ BELIEFS(A) and (ϕi, ai) ∈ Bb}. If BELIEFS(A)
= ∅ then Level(A) = 1;

– Weight(A) = wi such that (TOP (A), wi) ∈ Bd.

In order to avoid any kind of wishful thinking, belief arguments are supposed to
take precedence over explanatory ones. Formally:

Definition 14 (Comparing mixed arguments). ∀A1 ∈ Ab and ∀A2 ∈ Ad,
it holds that A1 is preferred to A2, denoted A1 �d A2.

Concerning explanatory arguments, one may prefer an argument which will,
for sure, justify an important desire. This suggests the use of a conjunctive
combination of the certainty level of the argument and its weight. However,
a simple conjunctive combination is open to discussion since it gives an equal
weight to the importance of the desire and to the certainty of the set of beliefs
that establishes that the desire takes place. Indeed, since beliefs verify the validity
and the feasibility of desires, it is important that beliefs take precedence over the
desires. This is translated by the fact that the certainty level of the argument is
more important than the priority of the desire. Formally:

Definition 15 (Comparing explanatory arguments). Let A1, A2 ∈ Ad.
A1 is preferred to A2, denoted by A1 �d A2, iff

– Level(A1) > Level(A2), or
– Level(A1) = Level(A2) and Weight(A1) > Weight(A2).
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B2 |- ¬B1

B1 |- b

undercut

B1& D1 |- d

B2 |- ¬B1

b-undercut

Belief Arguments:
undercut: Undermine the truth of the support

B2 & D2 |- ¬D1

d-undercut

Explanatory (Desire) Arguments:
b-undercut: Undermine the truth of a belief in the support
d-undercut: Undermine the desirability of desires in the support

Fig. 2. Summary of attacks involving belief and explanatory arguments

An explanatory argument for some desire can be defeated either by a belief
argument (which undermines the truth of the underlying belief justification), or
by another explanatory argument (which undermines one of the existing desires
the new desire is based on). Figure 2 summaries this notion of attack.

Definition 16 (Attack among Explanatory and Belief Arguments).
Let A1, A2 ∈ Ad and A3 ∈ Ab.

– A3 b-undercuts A2 iff ∃h′ ∈ BELIEFS(A2) such that CONC(A3) =≡ ¬h′;
– A1 d-undercuts A2 iff ∃h′ ∈ DESIRES(A2) such that CONC(A1) ≡ ¬h′;
– An argument A′ ∈ A attacksd A2 ∈ Ad iff A′ b-undercuts or d-undercuts A2

and not (A2 �d A′).

The following example illustrates the above concepts.

Example 3. (Builds on example 1) The agent finds out that the workshop has
been cancelled (wcancel ). That agent does not desire to go to the AI conference if
it is not of international standing (int). Unfortunately the Sydney AI conference
is not a good one. So the new bases are:

Bb = {(waic, 0.8), (wcancel, 1), (wcancel → ¬waic, 0.8),
(¬int, 1)}

Bd = {(waic ⇒ aic, 6), (¬int ⇒ ¬aic, 9)}
Bp = ∅
R = ∅.

The following arguments can be built:
B1: 〈{waic},waic〉
B2: 〈{wcancel,wcancel → ¬waic}, ¬waic〉
B3: 〈{¬int}, ¬int〉
A1: B1 ⇒ aic
A2: B3 ⇒ ¬aic
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It is clear that the argument B2 b-undercuts the argument A1 since waic ∈
BELIEFS(A1) and CONC(B2) = ¬waic. The argument A2 d-undercuts the argu-
ment A1 since CONC(A2) = ¬aic and aic ∈ DESIRES(A1).

Now that we have defined the notions of argument and defeasibility relation,
we are ready to define the argumentation framework that should return the
justified/valid desires.

Definition 17 (Argumentation framework). An argumentation framework
AFd for handling explanatory arguments is a tuple AFd = 〈Ab, Ad, Attackb,
Attackd〉 where Ab is the set of belief arguments, Ad the set of explanatory ar-
guments, and attackd is the defeasibility relation between arguments in A and
attackb is the defeasibility relation between arguments in Ab.

The definition of acceptable explanatory arguments is based on the notion of
defence. Unlike belief arguments, an explanatory argument can be defended by
either a belief argument or an explanatory argument. Formally:

Definition 18 (Defence among Explanatory and Belief Arguments).
Let S ⊆ A and A ∈ A. S defends A iff ∀A′ ∈ A where A′ attacksb (or attacksd)
A, there is some argument A′′ ∈ S which attacksb (or attacksd) A′.

F ′ is a function such that F ′(S) = {A ∈ A such that S defends A}.

One can show easily that the function F is monotonic. Thus, it admits a least
fixpoint. This last captures the acceptable arguments of AFd.

Proposition 2. Let AFd = 〈Ab, Ad, Attackb, Attackd〉 be an argumentation
framework. The set Acc(Ad) of acceptable explanatory arguments is defined as

Acc(Ad) = (
⋃

F ′i≥0(∅)) ∩ Ad

Proof. Due to the use of propositional language and finite bases, the argumen-
tation system is finitary, i.e each argument is attacked by a finite number of
arguments. Since the argumentation system is finitary then the function F ′ is
continuous. Consequently, the least fixpoint of F ′ is

⋃
F ′i≥0(∅).

One can show that the above argumentation framework captures the results of
the first framework which handles belief arguments.

Proposition 3. Let AFd = 〈Ab, Ad, Attackb, Attackd〉 be an argumentation
framework.

⋃
F ′i≥0(∅) = Acc(Ab) ∪ Acc(Ad)

Proof. This follows directly from the definitions of F and F ′, and the fact that
belief arguments are not attacked by explanatory arguments since we suppose
that belief arguments are preferred to explanatory ones.

Definition 19 (Justified desire). A desire ψ is justified iff ∃ A ∈ Ad such
that CONC(A) = ψ, and A ∈ Acc(Ad).

Desires supported by acceptable explanatory arguments are justified and hence
the agent will pursue them (if they are achievable).
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3.3 Arguing over Plans

In the previous section, we have presented a framework for arguing about desires
and producing a set of justified desires. In what follows we will show, among these
justified desires, which ones will be pursued and with which plan.

The basic building block of a plan is the notion of “partial plan,” which
corresponds to a planning rule.

Definition 20 (Partial Plan). A partial plan is a pair [H, ϕ] where

– ϕ ∈ R and H = ∅, or
– ϕ ∈ D and H = {ϕ1, . . . , ϕn, r1 . . . , rm} such that ∃ϕ1∧· · ·∧ϕn∧r1 · · ·∧rm �

ϕ ∈ Bp.

A partial plan [H, ϕ] is elementary iff H = ∅.

Definition 21 (Instrumental Argument, or Complete Plan). An instru-
mental argument is a pair 〈G, d〉 such that d ∈ D, and G is a finite tree such
that:

– the root of the tree is a partial plan [H, d];
– a node [{ϕ1, . . . , ϕn, r1 . . . , rm}, h′] has exactly n + m children [H ′1, ϕ1], . . .

[H ′n, ϕn], [∅, r1], . . . [∅, rm] where each [H ′i, ϕi], [∅, rk] is a partial plan;
– the leaves of the tree are elementary partial plans.

Nodes(G) is a function which returns the set of all partial plans of tree G, Des(G) is
a function which returns the set of desires that plan G achieves, and Resources(G)
is a function which returns the set of all resources needed to execute G.

Let Ap denotes the set of all instrumental arguments that can be built from
agent’s bases.

An instrumental argument may achieve one or several desires of different worths
with a certain cost. So the strength of that argument is the “benefit” or “utility”
which is the difference between the worths of the desires and the cost of the plan.
Formally:

Definition 22 (Strength of Instrumental Arguments). Let A = 〈G, g〉 be
an instrumental argument. The utility of A is

Utility(A) =
∑

di∈Des(G)

Worth(di) −
∑

rj∈Resources(G)

Cost(rj).

In [3], the strength of an instrumental argument is defined only on the basis of
the weight of the corresponding desire. That definition does not account for the
cost of executing the plan.

Example 4. A customer requires a car hire (a resource) in order to go to Syd-
ney (a goal), which in turn achieves the agent’s wish to attend an Artificial
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Intelligence conference (a desire). The customer desires to attend the AI confer-
ence because he believes it includes a workshop related to his research (a belief
that justifies the desire). Let:

aic = “attend the Sydney AI conference”;
syd = “go to Sydney”;
reg = “pay conference registration”;
rent = “rent a car”;
ford = “get a particular car of make Ford”;
pay$100 = “pay $100”;
pay$200 = “pay $200”;5

We can now specify the following, for the buyer agent B and seller agent S:

1. BB
b = {(waic, 1)}

2. BB
d = {(waic ⇒ aic, 6)}

3. BB
p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

syd ∧ reg � aic
rent � syd
ford ∧ pay$200 � rent
pay$100 � reg

4. RES = {pay$100, pay$200, ford}
5. RB = {pay$100, pay$200}
6. RS = {ford}

Figure 3 shows an instrumental argument, for attending the Sydney AI confer-
ence, that agent B can construct using the above information. Note that this
plan involves the execution of action ford by agent S, because B does not have
“ford” as one of its resources. Without getting the car from S, B cannot make
it to Sydney using this plan.

[{syd , reg }, aic ]

[{rent}, syd ] [{pay$100}, reg ]

[{ford, pay$200},  rent]

[Ø, do(B, pay$100)][Ø, do(S, ford)] [Ø, do(B, pay$200)]

Fig. 3. Complete plan for example 4

5 Realistically, one requires a more elaborate treatment of actions, e.g. the agent must
also be able to pay $300, or pay $50 six times. For simplicity, we suffice with these
illustrative unique actions.
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In [1], it has been shown that there are four great families of conflicts between
partial plans. In fact, two partial plans [H1, h1] and [H2, h2] may be conflicting
for one of the following reasons:

– desire-desire conflict, ie {h1} ∪ {h2} � ⊥
– plan-plan conflict, ie H1 ∪ H2 � ⊥.
– consequence-consequence conflict, ie the consequences of achieving the two

desires h1 and h2 are conflicting.
– plan-consequence conflict, ie the plan H1 conflicts with the consequences of

achieving h2.

The above conflicts are captured when defining the notion of conflict-free sets
of instrumental arguments.

Definition 23 (Conflict-free sets of instrumental arguments). Let S ⊆
Ap. S is conflict-free, with respect to the agent’s beliefs B∗b , iff � B′ ⊆ B∗b such
that:

1. B′ is consistent, and
2.

⋃
〈G,d〉∈S[

⋃
[H,h]∈Nodes(G)(H ∪ {h})] ∪ B′ �⊥

As with belief and explanatory arguments, we now present the notion of an
acceptable set of instrumental arguments.

Definition 24 (Acceptable Set of Instrumental Arguments). Let S ⊆
Ap. S is acceptable iff:

– S is conflict-free.
– S is maximal for set inclusion among the sets verifying the above condition.

Let S1, . . ., Sn be the different acceptable sets of instrumental arguments.

Definition 25 (Achievable desire). Let S1, . . ., Sn be the different acceptable
sets of instrumental arguments. A desire ψ is achievable iff ∃S′ ∈ {S1, . . . , Sn},
such that 〈G, ψ〉 ∈ S′

Definition 26 (Utility of Set of Instrumental Arguments). For an ac-
ceptable set of instrumental arguments S = {〈G1, d1〉, . . . , 〈Gm, dm〉}, the set of
all desires achieved by S and all resources consumed by S as follows:
DE (S) = {gl : gl ∈ Des(Gk), l = 1, . . . , h, k = 1, . . . , m}
RE (S) = {rl : rl ∈ Res(Gk), l = 1, . . . , h, k = 1, . . . , m}
The utility of a set of arguments S is:

Utility(S) =
∑

gi∈DE(S)

Worth(gi) −
∑

rj∈Resources(S)

Cost(rj).

We can now construct a complete pre-ordering on the set {S1, . . . , Sn} of ac-
ceptable sets of instrumental arguments. The basic idea is to prefer the set with
a maximal total utility: a maximal set of consistent plans.
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Definition 27 (Preferred set). Let S1, . . . , Sn be the acceptable sets of instru-
mental arguments. Si is preferred to Sj iff Utility(Si) ≥ Utility(Sj)

Note that the above definition allows for cases where a set with a single de-
sire/plan pair is preferred to another set with two or more desire/plan pairs
(because the utility achieved by this desire is higher than the other two). This is
more flexible than the frameworks of Amgoud and of Hustijn and van der Torre
[1,9], where sets with maximal number of desires are privileged, with no regard
to their priority or the cost of different plans.

In order to be pursued, a desire should be both justified (i.e supported by an
acceptable explanatory argument) and also achievable. Such desires will form
the intentions of the agent.

Definition 28 (Intention set).
Let T ⊆ PD. T is an intention set iff:

1. ∀di ∈ T , di is justified and achievable.
2. ∃Sl ∈ {S1, . . . , Sn} such that ∀di ∈ T , ∃ 〈Gi, di〉 ∈ Sl.
3. ∀ Sk �= Sl with Sk satisfying condition 2, then Sl is preferred to Sk.
4. T is maximal for set inclusion among the subsets of PD satisfying the above

conditions.

The second condition ensures that the desires are achievable together. If there
is more than one intention set, a single one must be selected (e.g. at random)
to become the agent’s intention. The chosen set is denoted by I. Finally, the
intended resources, denoted IR ⊆ RES denote the resources needed by plans
in Sl for achieving I. The example below, depicted in Figure 4, puts the above
concepts together.

Example 5. (Extends example 4) Suppose the buyer also would like to go on
holiday to New Zealand and must reason with a limited budget. Let:

nz = “take a holiday in New Zealand”;
flynz = “fly to New Zealand”;
hotel = “book a hotel accommodation”;
friend = “stay at a friend’s place”;
call = “call a friend”;

Suppose the agent has the following new desire generation knowledge base: BB
d =

{(waic ⇒ aic, 0.6), ⇒ nz , 0.5)} and that desires aic and nz are justified.
Finally, suppose costs are assigned as follows: Cost(pay$200) = 0.2, Cost

(pay$100 ) = 0.1, Cost(pay$200 ) = 0.2, Cost(call ) = 0, Cost(ford) = 0).6

Suppose the buyer has two instrumental arguments for going to New Zealand:
one requires booking a hotel (and paying $200), while the other involves calling
a friend to arrange a stay at his place. There are no conflicts between the argu-
ments A1, A2 and A3. Thus, there exists a unique acceptable set of instrumental
arguments {A1, A2, A3}. Since the desires aic and nz are supposed justifies, then
there is a unique intention set I = {aic,nz}.
6 The cost of “ford” to the buyer is zero because this resource is possessed by the

seller and hence would only incur a cost to the seller.
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[{hotel, flynz }, nz ]

[Ø, do(B, pay$200)] [Ø, do(B, pay$200)]

[{pay$200}, flynz ][{pay$200}, hotel]

[{friend, flynz }, nz ]

[Ø, do(B, call)] [Ø, do(B, pay$200)]

[{pay$200}, flynz ][{call}, friend]

A2 A3

[{syd , reg }, aic ]

[{rent}, syd ] [{pay$100}, reg ]

[{ford, pay$200},  rent]

[Ø, do(B, pay$100)][Ø, do(S, ford)] [Ø, do(B, pay$200)]

A1

Fig. 4. Plans for example 5

4 Related Works

Recently, a number of attempts have been made to use formal models of argu-
mentation as a basis for practical reasoning. Some of these models (e.g. [1,3,9])
are instantiations of the abstract argumentation framework of Dung [6], and our
work is a contribution to this approach. Other approaches are based on an encod-
ing of argumentative reasoning in logic programs (e.g. [10,14]) or on completely
new theories of practical reasoning and persuasion (e.g. [4,15]).

Amgoud [1] presented an argumentation framework for generating consistent
plans from a given set of desires and planning rules. This was later extended with
argumentation frameworks that generate the desires themselves (see below).

Amgoud and Kaci [3] have a notion of “conditional rule,” which is meant to
generate desires from beliefs. Our desire generation rules are more general. In
particular, we allow the generation of desires not only from beliefs, but also on
the basis of other desires. Hence, our desire generation rules are more general.

Another problem arises because Amgoud and Kaci’s definition does not dis-
tinguish between desires and beliefs in the antecedent and consequent of these
rules. This may lead to incorrect inferences where an agent may conclude beliefs
on the basis of yet-unachieved desires, hence exhibiting a form of wishful think-
ing. Our approach resolves this by distinguishing between beliefs and desires in
the rule antecedents, allowing desires only in the consequent, and refining the
notion of attack among explanatory arguments accordingly.

Hulstijn and van der Torre [9], on the other hand, have a notion of “desire
rule,” which contains only desires in the consequent. But their approach is still
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problematic. It requires that the selected goals7 are supported by goal trees8

which contain both desire rules and belief rules that are deductively consistent.
This consistent deductive closure again does not distinguish between desire liter-
als and belief literals (see Proposition 2 in [9]). This means that one cannot both
believe ¬p and desire p. In our framework, on the other hand, the distinction
enables us to have an acceptable belief argument for believing ¬p and, at the
same time, an acceptable explanatory argument for desiring p.

Another advantage of our framework is that it derives preferences among
explanatory and instrumental arguments using both worth and cost measures.
This contrasts with Amgoud’s and Hulstijn and van der Torre’s frameworks,
which privilege extensions with maximal number of desires without regard to
desire priorities and resource cost. And while [3] does incorporate the weight of
desires when calculating the strength of an instrumental argument, the cost of
executing plans is not taken into account.

5 Conclusions

We presented a formal model for reasoning about desires (generating desires and
plans for achieving them) based on argumentation theory. We adapted the notions
of attack and preference among arguments in order to capture the differences in
arguing about beliefs, desires and plans. We incorporated both the worth of desires
and cost of resources in order to produce intentions that maximise utility.

One of the main advantages of our framework is that, being grounded in ar-
gumentation, it lends itself naturally to facilitating dialogues about desires and
plans. Indeed, we are currently extending our framework with dialogue game
protocols in order to facilitate negotiation and persuasion among agents. An-
other interesting area of future work is investigating the relationship between
our framework and axiomatic approaches to BDI agents.
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Abstract. Distributed Constraint Satisfaction Problems provide a nat-
ural mechanism for multiagent coordination and agreement. To date, al-
gorithms for Distributed Constraint Satisfaction Problems have tended to
mirror existing non-distributed global-search or local-search algorithms.
Unfortunately, existing distributed global-search algorithms derive from
classical backtracking search methods and require a total ordering over
agents for completeness. Distributed variants of local-search algorithms
(such as distributed breakout) inherit the incompleteness properties of
their predecessors, or depend on the creation of new communication links
between agents. This paper presents a new approach, inspired by argu-
mentation, to solve DisCSP instances while avoiding some of the identified
drawbacks of global- and local-search.

1 Introduction

Inspired by recent research on argumentation-based negotiation [7, 5, 6], this
work introduces the notion of argumentation for solving problems within the
Distributed Constraint Satisfaction Problem domain. Argumentation, in this
setting, provides us with machinery for the communication and evaluation of
proposals.

Constraint Satisfaction Problems (CSPs) have proven applicable in a wide
variety of domains. A CSP instance is classically defined by a set of variables V ,
a domain for each variable Dv, and a set of constraints C. A solution to a CSP
is a complete assignment of values to variables which satisfies every constraint.
By appropriate selection of variables, domain and constraints, a CSP instance
can easily encode a broad range of computational problems such as satisfiability
(SAT) and the travelling salesman (TSP) decision problems.

The Distributed Constraint Satisfaction Problem (DisCSP) can be described
as: a constraint satisfaction problem where control of variable values are dis-
tributed among agents. As a general rule, distributed constraint satisfaction
problems occur in situations that are physically different to classical constraint
satisfaction problems. Distributed scheduling and coordination of physical sys-
tems, where information is naturally and necessarily distributed, are often given
as examples of DisCSP problems. It is the nature of the problem, and not the
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choice of the user, that requires us to invoke “agents” rather than established
parallelised computation techniques.

In this paper we assume each variable is managed by a single agent, and the
terms ‘variable’ and ‘agent’ are often used interchangeably. Each variable/agent
is aware of the constraints associated with itself and must coordinate with other
variables to find a solution to the underlying CSP. A DisCSP algorithm describes
the rules by which each agent operates and, as would be expected, is identifiable
as an agent-oriented algorithm:

– All information is held locally by each variable. This often includes current
assignments of neighbouring variables, and constraints deduced during the
execution of the algorithm. It may also include variable orderings (static or
dynamic), and information required for communication (such as the physical
location of a neighbouring variable).

– A DisCSP algorithm may only use information local to a variable in making
variable-value assignments or similar decisions. A CSP algorithm has access
to all information at no cost; a DisCSP algorithm must copy information
from one variable to another to be able to use it. There is no “global” infor-
mation in a DisCSP algorithm, and no global decision process; all decisions
must be made using only information local to a variable. This differentiates
DisCSP algorithms from parallelised instances of regular CSP algorithms,
which can often ignore the cost of access to information.

– A DisCSP algorithm’s performance is measured by the amount or frequency
of information transferral between variables. It is assumed that the cost of
copying information between variables outweighs processing costs. Depend-
ing on the target problem, it may also be assumed that some information
is already known to all agents and is not counted in the performance of the
algorithm.

– A DisCSP algorithm makes decisions for each variable concurrently. In many
such algorithms a certain degree of synchronisation is assumed, implemented
via usual distributed synchronisation schemes.

It is clear that DisCSPs are naturally solved using multi-agent paradigms. Of
particular interest is the use of DisCSPs as models for solving other multiagent
problems, with DisCSP algorithms defining a protocol for agent communication.
Common examples of such problems include cooperation, task assignment, and
limited forms of negotiation where simple decision(s) must be made per agent.
For these instances, a DisCSP can be constructed by representing each agent’s
decisions as a variable, and representing inter-agent relationships as constraints.

Existing DisCSP algorithms are distributed variants of existing local-search or
global-search or algorithms. However, local-search algorithms [10] are incomplete
in both the distributed and non-distributed case. Distributed variants of global-
search [1, 3, 8, 9] presented to date make use of a total order over variables.
We argue that any total order impacts the characteristics of backtracking-style
search in undesirable ways for use in many multiagent problems. For example,
an agent which has a ‘higher’ rank in the ordering has more ‘authority’ and
is therefore less likely to change its value than a ‘lower’ ranking agent. In an
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anytime environment this results in higher-ranked agents being granted more
stable answers. While some situations may desire such behaviour, our concern
lies with those situations which do not.

We also argue that, when using a total order, it is difficult to add constraints
between two previously independent DisCSPs. To do so would require a re-
computation of the variable ordering and/or an arbitrary decision that one
DisCSP ranks higher than the other. If a problem is frequently altered by the
addition of groups of variables, as is likely to occur in large DisCSP networks,
global re-computation will become increasingly difficult. If variable ordering is
instead made arbitrarily (for example, ordering by variable identifier), the prob-
lem of stability is exacerbated.

These arguments can be demonstrated with an example of a large-scale meet-
ing scheduling problem, as described below.

Example. The universities of Pluto and Saturn each use an automated system
for scheduling meetings amongst their own staff. The staff give constraints of the
form ‘Alice needs to meet with Bob for 2 hours this Wednesday or Thursday’ to
agents on their own computers. Individual universities contain a large number
of staff with generally sparse connections, so a distributed algorithm is used in
which agents communicate directly with each other. Agents are assigned com-
parable identifiers using finely-tuned schemes specific to each university. These
identifiers are chosen to permit backtracking in a distributed global-search algo-
rithm within the university.

Despite best efforts at fairness, a static ordering creates problems between re-
search peers. If the ordering states ’Alice ranks higher than Bob’ then any trivial
change in Alice’s meeting times must always be accepted by Bob. Inversely, Bob
may request a change to Alice’s meetings only after exhausting all possible meet-
ing schedules and detecting infeasibility. This problem is distinct from that of
preference orderings, and instead relates to stability (ie. Alice’s schedules are
more stable than Bob’s).

To worsen matters, Bob from Pluto wishes to arrange a meeting with Carla
from Saturn. Their identifiers, while still possibly unique, are not meaningfully
comparable for the purpose of a backtracking search. To continue using any
existing distributed algorithm, we must be able to compare identifiers between
agents operating at Pluto’s and Saturn’s universities. An example solution is to
decide that all Saturn’s identifiers are ‘greater’ than Pluto’s identifiers. Unfor-
tunately this would have the same impact on the behaviour of the algorithm
as outlined above - meeting schedules for researchers from Pluto would become
subservient to those from Saturn. Any changes in meeting times for Saturn’s
researchers, no matter how trivial, must be accepted by Pluto’s researchers.

Furthermore, any decision for resolving the variable order would require inter-
vention by authorities at each university or the use of a heuristic method such as
DisAO [1, 3]. While these decisions can be made for pairs or sets of universities, it
does not scale well computationally. For example, if Dennis was an independent
researcher he must establish ‘comparability’ with each university and all other
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researchers. The addition of new researchers frequently raises the possibility of
frequent re-computation of variable ordering.

The above example highlights problems that arise from using a total order to
establish ‘authority’ or ‘importance’ between agents, and maintaining a total or-
der subject to merging of previously independent DisCSPs. The computational
disadvantages of a total order were also noted and addressed within the devel-
opment of Asynchronous Weak-Commitment Search (AWCS) [8, 9]. However,
AWCS creates additional links between variables, which we believe is unde-
sirable in large-scale meeting scheduling. The specific difficulties of large-scale
distributed meeting scheduling motivated us to develop an algorithm which:

– has no need for ‘authority’ between variables, effectively avoiding the need
for a total order on variables.

– provides fairness in the level of stability for variables.
– does not add links between variables, avoiding the eventual need for ‘broad-

casting’ assignments.
– addresses the risk of cyclic behaviour exhibited by local search algorithms.

Section 2 will present a model of a simple meeting scheduling problem as
a DisCSP, and present how arguments can form the basis of communication
between agents. Section 3 will describe the internal decision processes of each
agent to handle arguments in an appropriate manner. Section 4 will present
analysis of the algorithm.

2 Modelling Arguments

We begin with a simple example demonstrating how a distributed constraint
satisfaction problem can be solved through arguments. We will then describe
a formal model of this problem with corresponding notation able to represent
the dialogue. This transformation serves as inspiration for a new distributed
constraint satisfaction algorithm.

Example. Alice, Bob, Carla and Dennis are attending a conference and must
organise meeting times for themselves:

– Bob must meet with Carla.
– Bob must meet with Alice before meeting with Carla.
– Dennis must meet with Alice.
– Bob, Carla and Dennis must have a separate group meeting.
– Available times are 1pm, 2pm and 3pm.
– Double-booking for meeting time-slots is not allowed.
– Each person knows only those meetings that they need to attend.
– No person has any ‘authority’ over any other.
– Communication can only occur between people who already know each other.



Support-Based Distributed Search 95

To find the solution they state arguments (proposals and rejections) in turn,
providing further detail if two arguments are contradictory or if they alter a
previous argument:

Alice to Dennis⇒I propose a 1pm meeting
Dennis to Carla⇒I propose a 2pm group meeting
Dennis to Bob⇒I propose a 2pm group meeting
Carla to Bob⇒I propose a 1pm meeting
Alice to Bob⇒I propose a 2pm meeting
Bob to Alice⇒I have a group meeting at 2pm,

so I propose a 1pm meeting instead
Bob to Carla⇒I completely reject your proposal,

so I propose a 3pm meeting instead
Alice to Dennis⇒I now have another meeting at 1pm,

so I propose a 3pm meeting instead

2.1 Constraint Model

To construct a distributed constraint satisfaction problem we translate the time
of attending a meeting for each person into a variable. Equality constraints are
used to ensure meeting times are agreed to by all users. For example, a pair
of variables a and b may represent the scheduled time of the meeting between
Alice and Dennis. The constraint a = b is interpreted as ‘the time Alice decides
to meet with Dennis must be the same as the time that Dennis decides to
meet with Alice’. Inequality constraints ensure that meetings occur at distinct
times.

V = {a, b, c, d, e, f, g, h, i}

D = {1pm, 2pm, 3pm}

C =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a = b a �= i
b �= c c = d
c = g d �= e
d = g e = f
f �= g f > h
g �= h h = i

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Fig. 1. Example of a constraint model and graph

Note that there is significant redundancy in the constraints and variables
as presented in Figure 1. This occurs as the constraints upon one person are
not automatically known to others. Relaxing this requirement would generate a
simpler constraint graph, but would conflict with our aim to solve in a distributed
manner. Using this constraint model as an example, we will now define suitable
notation for representing the dialogue.
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2.2 Argument Model

To represent proposals and rejections as outlined above, we require two dis-
tinct message types; isgoods and nogoods. These will be the only message types
required to construct our algorithm.

An isgood is an ordered partial assignment for a sequence of connected vari-
ables, and so represents a ‘proposal’. Consider the argument in our example
where Bob says to Alice: “I already have a group meeting at 2pm, so I propose
a 1pm meeting for us instead”. This is a proposal, and so can be written as an
ordered partial assignment or ‘isgood’:

〈(g, 2pm) , (h, 1pm)〉

This isgood is read as “variable g took on value 2pm, and so h took on value 1pm”.
Note that variables in an isgood must be connected to their immediate predeces-
sor, and therefore 〈(d, 2pm) , (h, 1pm)〉 is not an isgood. Also note that we use the
operator + to represent the appending of a variable assignment to an isgood. For
example, 〈(g, 2pm) , (h, 1pm)〉 + (i, 1pm) = 〈(g, 2pm) , (h, 1pm) , (i, 1pm)〉.

A nogood is an unordered partial assignment which is provably not part of a
solution, and so represents a ‘rejection’. Consider the argument in our example
where Bob says to Carla: “I reject your proposal, and I propose a 3pm meeting
for us instead” This is a rejection (he must meet Carla before Alice, so 1pm is
not a possible meeting time) followed by a proposal, which written in sequence
are:

{(e, 1pm)} and 〈(f, 3pm)〉

They are read as “variable e cannot take value 1pm” and “variable f took on
value 3pm” respectively. As demonstrated in our example, a nogood is usually
accompanied by an isgood.

We say that a constraint is satisfied by an isgood I if the constraint is
explicitly not violated by the assignments in I. Testing whether a constraint is
satisfied is therefore only possible if all variables appearing in the constraint also
appear in I. Similarly, a nogood is satisfied if it is not a subset of the assignments
in I. For example, given an isgood I = 〈(g, 2pm) , (h, 1pm)〉, we know:

– I + (i, 2pm) does not satisfy the constraint h = i

– I + (i, 1pm) does satisfy the constraint h = i

– I does not satisfy the nogood {(h, 1pm)}
– I does satisfy the nogood {(h, 1pm) , (i, 1pm)}

Thus, given a set of constraints and a set of nogoods, we say that an assignment
(v, d) is consistent with respect to an isgood I iff each constraint on v and each
nogood is satisfied by I + (v, d).

By the notation |I| we indicate the number of tuples in I. Finally, we will
write I � I ′ to indicate that I is a sub-isgood of I ′. A sub-isgood is the tail
(or entirety) of another isgood. For example:
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〈(i, 1pm)〉 � 〈(h, 1pm) , (i, 1pm)〉
� 〈(g, 2pm) , (h, 1pm) , (i, 1pm)〉

〈(i, 2pm)〉 �� 〈(h, 1pm) , (i, 1pm)〉
〈(h, 2pm)〉 �� 〈(h, 1pm) , (i, 1pm)〉

3 Solving with Arguments

Using the above notation, and the dialogue of our example as a guide, it is
possible to construct a distributed search algorithm in which agents will:

– send and receive proposals (isgoods) and rejections (nogoods)
– convince neighbours to change their value by sending progressively longer

proposals
– reject a proposal from a neighbour if it is inconsistent
– justify their variable assignment by the proposal of just one neighbour
– communicate only with agents for which they share a constraint

To achieve this, each agent records the most recent proposals sent/received by
neighbouring agents and an unbounded nogood store. Unlike other distributed
algorithms, SBDS does not regard all information from neighbours as a consistent
‘agent view’. Instead, the isgood received from just one neighbour is chosen as
justification for our current assignment and combines to form our ‘agent view’.
Formally, the information stored by each agent is:

– sent(v) - last isgood sent to each neighbour v
– recv(v) - last isgood received from each neighbour v
– nogoods - set of all nogoods ever received
– support - the neighbour chosen for our ‘agent view’
– view - current agent view (recv(support) extended by an assignment to our

own variable)

Procedure 1. main ()
1: while true do
2: for all received nogoods N (in fifo order) do
3: receive-nogood(N )
4: for all received isgoods I (in fifo order) do
5: receive-isgood(I )
6: select-support()
7: for all neighbours v do
8: send-isgood(v)
9: wait until at least one message in the queue
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Procedure 2. receive-isgood (I )
1: let v be the variable which sent I
2: set recv(v) to I
3: if no choice of value is consistent wrt recv(v) then
4: send-nogood(v)

Procedure 3. receive-nogood (N )
1: if N in nogoods then
2: break, as this nogood was already known
3: add N to nogoods
4: if no value is consistent then
5: terminate algorithm
6: for all neighbours v do
7: if no choice of value is consistent wrt recv(v) then
8: send-nogood(v)

Procedure 4. select-support ()
1: update-view ()
2: if our current value is inconsistent wrt some recv(v)

and |recv(v)| ≥ |view | then
3: set support to a neighbour u, maximising |recv(u)|
4: update-view ()

Procedure 5. update-view ()
1: let view ′ be recv(support) extended by a consistent

assignment to self, and maximal with respect to ≺
2: let v be the first variable assigned in view ′

3: if scope(view) �= scope(view ′) or view ≺ view ′ or
the assignment of v is equal in view ′ and recv(v) or
the assignment of v is unequal in view and recv(v) then

4: set view to view ′

Procedure 6. send-nogood (v)
1: let N be an inconsistent subset of recv(v)
2: send N to v
3: set recv(v) to 〈 〉
4: if support = v then set support to self
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Procedure 7. send-isgood (v)
1: if our current value is consistent wrt recv(v) and

sent(v) � view then
2: break, as a new isgood is not necessary
3: lock communication channel with v
4: if there are no unprocessed isgoods from v then
5: let L be min(max(|recv(v)|, |sent(v) + 1 |), |view |)
6: let I be an isgood such that I � view and |I | = L
7: send I to v
8: set sent(v) to I
9: unlock communication channel with v

The main loop of our algorithm processes all messages before choosing support
and view and sending new isgoods. Incoming isgoods are stored in recv(v) by the
receive-isgood procedure. If no assignment to our own variable is consistent with
respect to the new isgood and current known nogoods, the procedure send-nogood
is called to derive and send a nogood. Similarly the receive-nogood procedure
handles an incoming nogood; each recv(v) is re-tested for consistency, and send-
nogood is called if appropriate.

The select-support procedure determines which neighbouring variable will be
considered as our support for this iteration. A new support must be chosen if a
received isgood from a neighbour is longer than our current view and conflicts
with our current value.

The update-view procedure refreshes the current view according to the isgood
recv(support). In most cases update-view will replace view by selecting and ap-
pending a consistent assignment for our variable to the tail of recv(support).
As our algorithm is asynchronous, and agents can determine their assignments
simultaneously, there is the possibility of cyclic behaviour. This is corrected in
existing distributed search algorithms by the use of a total order on agents; a
change by a lower ranked agent cannot induce a change in a higher ranked agent.
In place of a total order on agents, we use orderings for isgoods defined over the
same set of variables. These orderings are only used in a situation where a cycle
is deemed likely. Being independent they can contain no bias towards any agent
or value.

Formally, let scope(I) be the sequence of variables in the isgood I. For ex-
ample, with I = 〈(c, 1pm), (b, 2pm)〉 we have scope(I) = 〈c, b〉. We assume an
ordering ≺ is known to all agents and is total for isgoods of the same unordered
scope.1 We will not replace a view with view ′ if each of the following is true:

– view is not out-of-date (ie. the most recently received assignment for v is
the same as that presented in view )

– view ′ is out-of-date (ie. the most recently received assignment for v is differ-
ent from that presented in view ′)

1 Cryptographic hash functions can be used to provide a suitably unbiased ordering
for sets of assignments written in a canonical form.
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– view ′ may be part of a cycle (ie. the ordered scopes of view and view ′ are
identical, and the first assignment is to a neighbour v)

– view ′ is lower in the ordering (ie. view ′ ≺ view )

This scheme causes an agent to postpone changing its value if its new view
would be out-of-date, would propagate a cycle, and the old view is regarded as
‘superior’ by the ordering. As the definition of the ordering is uniform across
all agents, any cyclic behaviour will quickly resolve in favour of a single view.
Theorem 1 contains a formal statement and proof of this result.

The send-nogood procedure generates and sends an appropriate nogood when
a received isgood is found to be inconsistent. The nogood may be any inconsistent
subset of the assignments in the isgood. An interesting effect of this procedure
is that nogoods are formed only from variables in a sequence, rather than ‘all
neighbours’ as occurs in AWCS.

The send-isgood procedure constructs the strongest possible isgood to send to
agent v while satisfying certain ‘minimality’ requirements. If there is no need to
send an isgood (ie. we have already established agreement with our neighbour)
then we need not counter its argument. An isgood is not sent to a neighbour v
if there are unprocessed isgoods in the communication channel.

We ensure that individual pairs of agents do not communicate simultaneously
by using a mutex on individual communication channels. If an argument from a
neighbour v has arrived between the last call to receive-isgood and the activation
of the lock then we skip sending an argument on this iteration. The result is half-
duplex communication with all agents able to operate asynchronously.

To avoid cycles of oscillating agent values in inconsistent problems, we in-
crease the length of successive arguments which are sent. This is achieved by
recording the last isgood sent and attempting to increase the length of subse-
quent isgoods. As any cycle must be finite, eventually the arguments (isgoods)
being transmitted will contain the cycle itself. If the cycle is formed from in-
consistent values it will generate a nogood and break the cycle; otherwise the
cycle-breaking mechanism of update-view will take effect.

4 Results

We have described desirable properties of an algorithm for distributed constraint
satisfaction. Specifically, we have attempted to construct an algorithm which:

– has no need for ‘authority’ between variables, effectively avoiding the need
for a total order on variables.

– provides fairness in the level of stability for variables.
– does not add links between variables, avoiding the eventual need for ‘broad-

casting’ assignments.
– addresses the risk of cyclic behaviour exhibited by local search algorithms.

The fact that we do not add links between variables is evident from the
algorithm itself. Similarly, we note the absence of any total ordering over the
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Table 1. Example algorithm execution on the problem in Figure 1. Arrows indicate
direction of communication.

Nodes Argument

a → b 〈(a, 1pm)〉

a → i 〈(a, 1pm)〉

c → b 〈(c, 1pm)〉

c → d 〈(c, 1pm)〉

c → g 〈(c, 1pm)〉

e → d 〈(e, 1pm)〉

e → f 〈(e, 1pm)〉

b → a 〈(b, 1pm)〉

b → c 〈(a, 1pm), (b, 1pm)〉

d → c 〈(d, 1pm)〉

d → g 〈(d, 1pm)〉

d → e 〈(c, 1pm), (d, 1pm)〉

f → e {(e, 1pm)}

f → e 〈(f, 3pm)〉

f → g 〈(f, 3pm)〉

f → h 〈(f, 3pm)〉

e → f 〈(e, 3pm)〉

e → d 〈(f, 3pm), (e, 3pm)〉

c → b 〈(c, 2pm)〉

c → d 〈(b, 1pm), (c, 2pm)〉

c → g 〈(b, 1pm), (c, 2pm)〉

g → c 〈(g, 2pm)〉

g → d 〈(g, 2pm)〉

g → f 〈(g, 2pm)〉

g → h 〈(g, 2pm)〉

i → a 〈(i, 2pm)〉

i → h 〈(i, 2pm)〉

d → c 〈(d, 2pm)〉

d → g 〈(c, 2pm), (d, 2pm)〉

d → e 〈(b, 1pm), (c, 2pm), (d, 2pm)〉

h → g 〈(h, 1pm)〉

h → i 〈(g, 2pm), (h, 1pm)〉

i → h 〈(i, 1pm)〉

i → a 〈(h, 1pm), (i, 1pm)〉

a → i 〈(a, 3pm)〉

a → b 〈(i, 1pm), (a, 3pm)〉

b → a 〈(b, 3pm)〉

b → c 〈(a, 3pm), (b, 3pm)〉

c → d 〈(b, 3pm), (c, 2pm)〉

c → g 〈(b, 3pm), (c, 2pm)〉

Solution: a, b, e, f = 3pm;

c, d, g = 2pm; h, i = 1pm

In the first iteration, a, c and e announce
their initial values (all chose 1pm). Note that
other agents could communicate at the same
time (eg. g and h) but to simplify the expla-
nation we have limited the presentation of
arguments.

In the second iteration, b, d and f respond
to these proposals. In the first case, b ac-
cepts the proposed time of 1pm from a and
communicates an agreeable value to a. As c

proposed a contradictory value, b provides a
longer isgood as a counter-proposal. At the
same time, d accepts the proposed time of
1pm from c and communicates that to its
neighbours. Finally, f rejects the proposal
from e outright with a nogood, and proposes
instead a time of 3pm.

In the third iteration, e and c respond to
the counter-proposals. As f gave the longest
proposal, e will use it as support to argue
against d. Similarly, c uses b.

In the fourth iteration g and i announce
their values for the first time, choosing val-
ues supported by c and a respectively.

In the fifth iteration, d and h accept the pro-
posals from c and g respectively. Note the in-
creasing (and varying) lengths of isgoods as
d communicates with different neighbours.

In the sixth iteration, i changes its support
from a to h, and changes its value accord-
ingly. This change is then communicated to
a; the first such communication from i to a.

In the seventh iteration, a is free to choose
between b and i for support (it had not pre-
viously used neither).

The final iterations consist of propagat-
ing this change to b (which changes its
value), and then to c. Note that c does not
change value, but still must communicate
the change of b’s value to d and g.
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variables, which avoids any notion of ‘authority’. Each isgood establishes an
order over variables within a local context in the form of a sequence in which
assignments were made. This is necessary for the introduction of nogoods in the
style of Dynamic Backtracking [2, 1]. However, the combination of these local
orders does not necessarily end in the construction of a total order over variables.
We have also provided a novel method to address cyclic behaviour which plagues
distributed local search algorithms [10]. Each of these results can be observed in
the detailed algorithm execution shown in Table 1.

Key to the success of SBDS is the elimination of cyclic behaviour in what
is otherwise a local search algorithm. Below we will present formal proof that
cyclic behaviour has been eliminated:

Lemma 1. Eventually no new nogoods will be generated, and the length of view
will become stable (bounded above) for each agent.

Proof. Each agent maintains an unbounded store of nogoods, and each isgood
is constructed in a way that is consistent with all nogoods known at the time.
Therefore, if the algorithm were to never terminate, eventually no new nogoods
will be generated.

If no new nogoods are generated, then the method of selection for support and
view ensures that support will stabilise. As a result, the length of view will also
stabilise as it is monotonic increasing over time, but bounded above by either
the depth of the ‘support tree’ or the length of a cycle.

Theorem 1. The algorithm is sound, and will terminate.

Proof. The algorithm uses sound nogood derivation techniques and will termi-
nate with ‘no solution’ only if the empty nogood is derived. Inversely, each agent
ensures that its neighbours know its current value, and will continue to commu-
nicate if an inconsistency exists. The algorithm will not terminate unless it has
a correct answer, and therefore is sound.

By Lemma 1 we know that eventually no new nogoods will be generated
and the length of view will become stable for each agent. Therefore the support
for each agent will also become stable, and so value selection for each variable
will become dependant only upon information from its support . In such a situ-
ation the algorithm will only fail to terminate if there exists some directed tour
of agents v1, . . ., vn which are ‘supporting’ each other and oscillating between
candidate solutions. However, each candidate solution has the same unordered
scope, and so we can utilise the postponement scheme outlined in Section 3. By
this scheme, solutions ranked lower by ≺ will be removed until the oscillating
stops and the algorithm terminates.

Finally, we provide empirical evidence that no variables change value signifi-
cantly more often than any other. Figure 2 presents the number of value changes
per variable while using our algorithm to solve a randomly constructed feasible
problem. Observe that the frequency of value change is fairly evenly distributed
amongst variables, with none forced to change significantly more than another.
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Fig. 2. Frequency of assignment changes per variable for a random problem of 100
variables, 300 constraints, domain size of 5, and constraint tightness of 0.325

Identical results are seen for other problem sizes and constraint tightness. This
particular result also provides further evidence that no significant ‘authority’ is
exerted by one variable over another. If authority was exerted we would expect
an exponential (or at least polynomial) increasing curve, as some variables are
forced to change by others.

5 Performance

In previous work [4] we used a complicated definition of isgood involving a mea-
sure of ‘strength’ that allowed SBDS to approximate chronological backtracking
search. The aim of that measure of strength was to minimise the rate of growth
of L in send-isgood, and so reduce the amount of information being transmit-
ted in each iteration. However, this measure significantly complicated the proof
of completeness. To minimise the rate of growth of L, and to increase perfor-
mance, we replace this measure with a simple heuristic carefully constructed in
an attempt to maintain completeness.

First note that the completeness of SBDS depends upon lines 1 of update-
view and line 5 of send-isgood. We risk cyclic behaviour if we do not choose a
view ′ which is maximal with respect to ≺ or forcibly increase the length sent
to neighbours. However, these items incur significant performance penalties. For
example, by choosing a view ′ that is maximal with respect to ≺, we are unable
to use min-conflict or similar value selection heuristics. Similarly, by consistently
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increasing the length of isgoods, we discourage local-search behaviour and impact
performance accordingly.

However, we are not required to select the maximal view ′ or increase the
length of isgoods with every iteration of the algorithm. We may instead perform
either action after a finite number of iterations, by:

– forcing an increase in |sent(v)| only after a bounded number of iterations of
the algorithm;

– permitting heuristic selection of view ′ until |sent(v)| cannot be increased
further;

– permitting a decrease in |sent(v)| when the ordered scope of view changes.

The resulting algorithm is not formally covered by Theorem 1, but extensive
testing on random problems has revealed no unsolvable instances.
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Fig. 3. Comparison of SBDS and Distributed Breakout for feasible random problems
with 200 variables and 400 constraints, domain size of 5, and constraint tightness of
0.4

These simple techniques significantly improve the performance of SBDS by
permitting the use of min-conflict heuristics in value selection. Figures 3 and 4
present comparisons of SBDS and Distributed Breakout. We compare with Dis-
tributed Breakout as it is simple to implement, and is often very fast on feasible
problem instances. We ran each on approximately 13000 feasible random binary
problem instances, with an upper limit of 10000 iterations per instance. We also
ran SBDS on approximately 350 infeasible random problem instances generated
in the same way.
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Figure 3 plots each random problem instance found feasible by SBDS, com-
paring the number of iterations taken for each algorithm. For the majority of
instances where the algorithms completed, both took less than 2000 iterations.
However, Distributed Breakout still had a large proportion of instances which
took more than 2000 iterations, and a significant proportion were not completed.
Particularly important is that there were few problems found ‘easy’ for Distrib-
uted Breakout but hard for SBDS.

Figure 4 graphs the percentage of completed problems for Distributed Break-
out and SBDS. As Distributed Breakout is unable to solve infeasible problem
instances we have not presented those. As can be seen, of the problem instances
found feasible by SBDS, 98% were solved within a 4000-iteration limit. In con-
trast Distributed Breakout was able to complete only 50% of the same problems
within 4000 iterations, and 55% within 10000 iterations. We also present the
percentage of problem instances found to be infeasible by SBDS, and the itera-
tions required to find them. While performance is worse on infeasible problems,
it is still reasonable.
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Fig. 4. Comparison of SBDS on feasible and infeasible random problems with 200
variables and 400 constraints, domain size of 5, and constraint tightness of 0.4

6 Conclusion

Distributed Constraint Satisfaction Problems provide a natural mechanism for
multiagent coordination and agreement. To date, algorithms for Distributed
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Constraint Satisfaction Problems have tended to mirror existing non-distributed
global-search or local-search algorithms. However, there exist natural examples
of DisCSPs for which a total variable ordering and/or linking variables is not de-
sired. If we are to solve such DisCSPs we must develop new algorithms designed
specifically for distributed environments.

In this paper we have presented one such algorithm. Key to the success of
the algorithm is the use of argumentation as a model for agent operation. This
technique avoids fixed ranks for agents and the resultant behaviour which is
undesirable in natural problems such as meeting scheduling. The placing of a
total order over solutions for subsets of variables also provides a novel approach
to solving the issue of cyclic behaviour in local search algorithms. This paper
also represents a significant simplification, with formal proof results and better
performance, of the algorithm presented in [4].

Note that SBDS has been developed with specific goals in mind; it is designed
to solve problems for which existing algorithms are unsuitable. It is therefore
difficult to compare performance characteristics with other algorithms, in much
the same way as comparisons between centralised and distributed algorithms
are difficult. The above performance results are promising, but further testing
against other distributed search algorithms is required.
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Abstract. Social influences play an important part in the actions that an indi-
vidual agent may perform within a multi-agent society. However, the incomplete
knowledge and the diverse and conflicting influences present within such soci-
eties, may stop an agent from abiding by all its social influences. This may, in
turn, lead to conflicts that the agents need to identify, manage, and resolve in or-
der for the society to behave in a coherent manner. To this end, we present an em-
pirical study of an argumentation-based negotiation (ABN) approach that allows
the agents to detect such conflicts, and then manage and resolve them through
the use of argumentative dialogues. To test our theory, we map our ABN model
to a multi-agent task allocation scenario. Our results show that using an argu-
mentation approach allows agents to both efficiently and effectively manage their
social influences even under high degrees of incompleteness. Finally, we show
that allowing agents to argue and resolve such conflicts early in the negotiation
encounter increases their efficiency in managing social influences.

1 Introduction

Autonomous agents usually operate as a multi-agent community performing actions
within a shared social context to achieve their individual and collective objectives. In
such situations, the actions of these individual agents are influenced via two broad forms
of motivations. First, the internal influences reflect the intrinsic motivations that drive
the individual agent to achieve its own internal objectives. Second, as agents reside and
operate within a social community, the social context itself influences their actions. For
instance, within a structured society an agent may assume certain specific roles or be
part of certain relationships. These, in turn, may influence the actions that an agent may
perform. Here, we categorise such external forms of motivations as social influences.

Now, in many cases, both these forms of influence are present and they may give
conflicting motivations to the individual agent. For instance, an agent may be internally
motivated to perform a specific action. However, at the same time, it may also be subject
to an external social influence (via the role it is enacting or the relationship that it is part
of) not to perform it. Also an agent may face situations where different social influences
motivate it in a contradictory fashion (one to perform a specific action and the other not
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to). Furthermore, in many cases, agents have to carry out their actions in environments
in which they are not completely aware of all the roles, relationships, or the ensuing
commitments that they and their counterparts enact. Thus, in such instances, an agent
may not be aware of the existence of all the social influences that could or indeed should
affect its actions and it may also lack the knowledge of certain specific social influences
that motivate other agents’ actions. Therefore, when agents operate in a society with
incomplete information and with such diverse and conflicting influences, they may, in
certain instances, lack the knowledge, the motivation and/or the capacity to abide by all
their social influences.

However, to function as a coherent society it is important for these agents to have a
means to resolve such conflicts, manage their internal and social influences, and to come
to a mutual understanding about their actions. To this end, Argumentation-Based Nego-
tiation (ABN) has been advocated as a promising means of resolving conflicts within
such agent societies [10,15]. In more detail, ABN allows agents to exchange additional
meta-information such as justifications, critics, and other forms of persuasive locutions
within their interactions. These, in turn, allow agents to gain a wider understanding of
the internal and social influences affecting their counterparts, thereby making it easier
to resolve certain conflicts that arise due to incomplete knowledge. Furthermore, the
negotiation element within ABN also provides a means for the agents to achieve mutu-
ally acceptable agreements to the conflicts of interests that they may have in relation to
their different influences.

Against this background, this work advances the state of the art in the following
ways. First, our main contribution is to propose a novel ABN approach that allows
agents to detect, manage, and resolve conflicts related to their social influences in a
distributed manner within a structured agent society. In order to demonstrate the per-
formance benefits of our method, we use our proposed ABN framework to design a
number of ABN strategies to manage such conflicts and then use an empirical evalu-
ation to assess their impact. Specifically, we show that allowing agents to argue about
their social influences provides them with the capability to not only manage their social
influence more effectively, but to do so more efficiently as a society. Furthermore, we
show that giving these agents the capability to challenge their counterparts and obtain
their reasons for violating social commitments (instead of simply attempting to claim
the penalty charges to which they are entitled) allows the agents to manage their social
influences even more efficiently. Our second main contribution is to the ABN com-
munity. Here, we present a complete ABN framework which allows agents to argue
and negotiate and resolve conflicts in the presence of social influences. Furthermore,
we demonstrate the versatility of that framework; first, by mapping it to a specific
computational problem of a multi-agent task allocation scenario and second, by us-
ing it to design a number of ABN strategies to resolve conflicts within a multi-agent
society.

To this end, the remainder of the paper is structured as follows. First, Section 2
highlights the theoretical model of our ABN framework. Section 3 then maps this
model to a computational context detailing the different representations and algorithms
used. Subsequently, Section 4 details the experimental setting, presents our results and
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an analysis of the key observations. Next, Section 5 discusses the related work and
Section 6 concludes.

2 Social Argumentation Model

In this section, we give a brief overview of our formal and computational framework for
arguing and negotiating in the presence of social influences. In abstract, our framework
consists of four main elements: (i) a schema for reasoning about social influence, (ii)
a set of social arguments that make use of this schema, (iii) a language and protocol
for facilitating dialogue about social influence, and (iv) a set of decision functions that
agents may use to generate dialogues within the protocol. In the following sub-sections,
we discuss each of these elements in more detail.1

2.1 Social Influence Schema

The notion of social commitment acts as our basic building block for capturing social
influence. First introduced by Castelfranchi [3], it remains simple, yet expressive, and
is arguably one of the fundamental approaches for modelling social behaviour among
agents in multi-agent systems. In essence, a social commitment (SCx⇒y

θ ) is a commit-
ment by one agent x (termed the debtor) to another y (termed the creditor) to perform a
stipulated action θ. As a result of such a social commitment, the debtor is said to attain
an obligation toward the creditor, to perform the stipulated action. The creditor, in turn,
attains certain rights. These include the right to demand or require the performance of
the action, the right to question the non-performance of the action, and, in certain in-
stances, the right to demand compensation to make good any losses suffered due to its
non-performance. We refer to these as rights to exert influence. This notion of social
commitment, resulting in an obligation and rights to exert influence, allows us a means
to capture social influences between two agents. In particular, obligations reflect the
social influences an agent is subjected to, while rights reflect the social influences the
agent is capable of exerting on others.

Given this basic building block for modelling social influence between specific pairs
of agents, we now proceed to explain how this notion is extended to capture social
influences resulting due to factors such as roles and relationships within a wider multi-
agent society (i.e., those that rely on the structure of the society, rather than the specific
individuals who happen to be committed to one another). Specifically, since most re-
lationships involve the related parties carrying out certain actions for each other, we
can view a relationship as an encapsulation of social commitments between the asso-
ciated roles. For instance, a relationship between the roles supervisor and student may
be associated with a social commitment “to hand over the thesis in a timely manner.”
This social commitment, in turn, gives the student an obligation toward the supervisor
to hand in the thesis, and gives the supervisor the right to exert influence on the student

1 It is important to note that here we only give a basic recap of our model to enable the reader to
gain an overall understanding. A comprehensive formal representation of the framework can
be found in [9,11,12].
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by either demanding that he does so or through questioning his/her non-performance.
In a similar manner, the supervisor may be influenced to review and comment on the
thesis. This again is another social commitment associated with the relationship. In
this instance, it subjects the supervisor to an obligation to review the thesis while the
student gains the right to demand its performance. In this manner, social commitment
again provides an effective means to capture the social influences emanating through
roles and relationships of the society (independently of the specific agents who take on
the roles).

However, within a society not all social commitments influence the agent to the
same degree. Certain social commitments may cause a stronger social influence than
others. In order to capture this concept, here, we do not strictly adhere to the analysis
of Castelfranchi that an honest agent will always gain an internal commitment (re-
sulting in an intention to perform that action) for all its social commitments. On the
contrary, in accordance with the work of Cavedon and Sonenberg [4] and Dignum et
al. [5,6], we believe that all social commitments encapsulate their own degree of in-
fluence that they exert upon the individual. This will, in turn, result in agents being
subjected to obligations with different degrees of influence. This is, we believe, an im-
portant characteristic in realistic multi-agent societies, where autonomous agents are
subjected to contradicting external influences (which may also conflict with their in-
ternal influences). Therefore, if an agent is subjected to obligations that either con-
tradict or hinder each other’s performance, the agent will make a choice about which
obligation to honour. To facilitate this choice, we associate with each social commit-
ment a degree of influence f . Thus, when a certain agent attains an obligation due to
a specific social commitment, it subjects itself to its associated degree of influence.
We believe this degree of influence is dependent on two main factors. The first is the
relationship that the social commitment is a part of. In more detail, two different so-
cial commitments related with the same action, but part of different relationships, can
cause different degrees of external influence to the agent. Second, it is also depen-
dent on the associated action. Thus even in the same relationship, certain social com-
mitments associated with certain actions may cause a stronger influence than others.
In order to reflect this degree of influence within our notation, we incorporate f as
an additional parameter that gives us the extended notation for social commitment as
SCx⇒y

θ,f .2

Given this descriptive definition of our model, we now formulate these notions to
capture the social influences within multi-agent systems as a schema (refer to Figure 1
and formulae (1) through (6)):

2 From a deontic logic point of view, this notion of obligation is similar to that of a contrary-to-
duty form [20]. Within the logic community, a number of different variations of deontic logic
has been proposed to formalise the semantics of such notions [17,20]. However, this paper
does not attempt to formulate a new form of logic or attempt to forward a logical approach to
reason about such decisions. Our primary aim here is to empirically evaluate how agents can
argue, negotiate, and resolve such conflicts that may occur in multi-agent systems. Therefore, a
deontic logic level semantic definition on how agents reason about such obligations is beyond
the scope of this paper. An interested reader is pointed toward [17] and [20] for possible paths
of formalisation.
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Definition 1. For nA, nR, nP , nΘ ∈ N+, let:
• A = {a1, . . . , anA} denote a finite set of agents,
• R = {r1, . . . , rnR} denote a finite set of roles,
• P = {p1, . . . , pnP } denote a finite set of relationships,
• Θ = {θ1, . . . , θnΘ} denote a finite set of actions,
• Act : A × R denote the fact that an agent is acting a role,
• RoleOf : R × P denote the fact that a role is related to a relationship, and
• In : A × R × P denote the fact that an agent acting a role is part of a relationship.

If an agent acts a certain role and that role is related to a specific relationship, then
that agent acting that role is said to be part of that relationship (as per Cavedon and
Sonenberg [4]):

Act(a, r) ∧ RoleOf(r, p) → In(a, r, p) (Rel. Rule)

Definition 2. Let SC denote a finite set of social commitments and SCx⇒y
θ,f ∈ SC.

Thus, as per [3], SCx⇒y
θ,f will result in the debtor attaining an obligation toward the

creditor to perform a stipulated action and the creditor, in turn, attaining the right to
influence the performance of that action:

SCx⇒y
θ,f → Ox⇒y

θ,f− ∧ Ry⇒x
θ,f+ , (S-Com Rule)

where:

- Ox⇒y
θ,f− represents the obligation that x attains that subjects it to an influence of a

degree f toward y to perform θ (here the f− indicates the agent being subjected to
the influence) and

- Ry⇒x
θ,f+ represents the right that y attains which gives it the ability to demand, ques-

tion, and require x regarding the performance of θ (here the f+ sign indicates that
the agent attains the right to exert influence).

Definition 3. Let:
• DebtorOf : (R ∪ A) × SC denote that a role (or an agent) is the debtor in a social

commitment,
• CreditorOf : (R ∪ A) × SC denote that a role (or an agent) is the creditor in a so-

cial commitment,
• ActionOf : Θ×SC denote that an act is associated with a social commitment, and
• InfluenceOf : f × SC denote the degree of influence associated with a social

commitment, and
• AssocWith : SC × P denote that a social commitment is associated with a

relationship.

If the roles associated with the relationship are both the creditor and the debtor of a
particular social commitment, then we declare that social commitment is associated
with the relationship.
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An agent ai acting the role ri

Leads it to be part of the relationship p
With another agent aj acting the role rj

A social commitment SC
ri⇒rj
θ,f associated with p

• Leads to ai attaining an obligation O toward rj ,
Which subjects it to an influence of degree f
To perform the action θ

• And, in turn, leads to aj attaining the right R toward ri

Which gives it the ability to exert an influence of degree f
To demand, question, and require the performance of action θ

Fig. 1. Schema of social influence

Given these definitions, applying the Rel Rule to a society where: ai, aj ∈ A ∧ ri, rj ∈
R ∧ p ∈ P such that Act(ai, ri), Act(aj , rj), RoleOf(ri, p), RoleOf(rj , p) hold true,
we obtain:

Act(ai, ri) ∧ RoleOf(ri, p) → In(ai, ri, p) (1)

Act(aj , rj) ∧ RoleOf(rj , p) → In(aj , rj , p). (2)

Now, consider a social commitment SCri⇒rj

θ,f associated with the relationship p in this
society. Applying this to Definition 3 we obtain:

(DebtorOf(ri, SC) ∧ RoleOf(ri, p)) ∧ (CreditorOf(rj , SC) ∧ RoleOf(rj , p))

∧ InfluenceOf(f, SC) ∧ ActionOf(θ, SC) → AssocWith(SCri⇒rj

θ,f , p). (3)

Applying the S-Comm Rule to SCri⇒rj

θ,f we obtain:

SCri⇒rj

θ,f → Ori⇒rj

θ,f− ∧ Rrj⇒ri

θ,f+ . (4)

Combining (1), (3) and (4) we obtain:

In(ai, ri, p) ∧ AssocWith(SCri⇒rj

θ,f , p) → Oai⇒rj

θ,f− . (5)

Combining (2), (3) and (4) we obtain:

In(aj , rj , p) ∧ AssocWith(SCri⇒rj

θ,f , p) → Raj⇒ri

θ,f+ . (6)

2.2 Social Arguments

Having captured the notion of social influence into a schema, we now show how agents
can use this schema to systematically identify social arguments to negotiate in the pres-
ence of social influences. Specifically, we identify two major ways in which social in-
fluence can be used to change decisions and, thereby, resolve conflicts between agents.

Socially Influencing Decisions. One way to affect an agent’s decisions is by arguing
about the validity of that agent’s practical reasoning [2]. Similarly, in a social context,
an agent can affect another agent’s decisions by arguing about the validity of the other’s
social reasoning. In more detail, agents’ decisions to perform (or not) actions are based
on their internal and/or social influences. Thus, these influences formulate the justifi-
cation (or the reason) behind their decisions. Therefore, agents can affect each other’s
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REJECT ASSERT

OPEN−DIALOGUE PROPOSE ACCEPT CLOSE−DIALOGUE

CHALLENGE

Fig. 2. Dialogue Interaction Diagram

decisions indirectly by affecting the social influences that determine their decisions.
Specifically, in the case of actions motivated via social influences through the roles and
relationships of a structured society, this justification to act (or not) flows from the so-
cial influence schema (see Section 2.1). Given this, we can further classify the ways
that agents can socially influence each other’s decisions into two broad categories:

1. Undercut the opponent’s existing justification to perform (or not) an action by dis-
puting certain premises within the schema that motivates its opposing decision (i.e.,
dispute ai is acting role ri, dispute SC is a social commitment associated with the
relationship p, dispute θ is the action associated with the obligation O, etc.).

2. Rebut the opposing decision to act (or not) by,
i. Pointing out information about an alternative schema that justifies the decision

not to act (or act as the case may be) (i.e., point out that ai is also acting in role
ri, that SC is also a social commitment associated with the relationship p, that θ
is the action associated with the obligation O, etc.).

ii. Pointing out information about conflicts that could or should prevent the oppo-
nent from executing its opposing decision (i.e., point out conflicts between two
existing obligations, rights, and actions).

Negotiating Social Influence. Agents can also use social influences within their ne-
gotiations. More specifically, as well as using social argumentation as a tool to affect
decisions (as above), agents can also use negotiation as a tool for “trading social influ-
ences”. In other words, the social influences are incorporated as additional parameters
of the negotiation object itself. For instance, an agent can promise to (or threaten not to)
undertake one or many future obligations if the other performs (or does not perform) a
certain action. It can also promise not to (or threaten to) exercise certain rights to in-
fluence one or many existing obligations if the other performs (or does not perform) a
certain action. In this manner, the agents can use their obligations, rights, and even the
relationship itself as parameters in their negotiations.

2.3 Language and Protocol

To enable agents to express their arguments, we define two complimentary languages:
the domain language and the communication language (see [11] for a complete for-
mal specification). The former allows the agents to express premises about their social
context and also the conflicts that they may face while executing actions within such
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Algorithm 1. Decision making algorithm for PROPOSE.
1: if (Capable(do(ai, θi)) ∧ B

ai
do(aj ,θj) > C

ai
do(ai,θi)

) then

2: PROPOSE(do(aj, θj), do(ai, θi))
3: end if

Algorithm 2. Decision making algorithm for ACCEPT or REJECT.
1: if (Capable(do(aj, θj)) ∧B

aj
do(ai,θi)

> C
aj
do(aj,θj)) then

2: ACCEPT(do(aj, θj), do(ai, θi))
3: else
4: REJECT(do(aj, θj), do(ai, θi))
5: end if

a context. The communication language, on the other hand, enables agents to express
premises about the social context in the form of arguments and, thereby, engage in
their discourse to resolve conflicts. This consists of seven elocutionary particles (i.e.,
OPEN-DIALOGUE, PROPOSE, ACCEPT, REJECT, CHALLENGE, ASSERT, and
CLOSE-DIALOGUE). These locutions can be used together with content expressed in
the domain language in order to allow agents to make utterances (e.g., assert a particular
social premise, challenge a premise, make a specific proposal, and so on).

The protocol, which indicates the legal ordering of communication utterances, has
six main stages: (i) opening, (ii) conflict recognition, (iii) conflict diagnosis, (iv) conflict
management, (v) agreement, and (vi) closing. The opening and closing stages provide
the important synchronisation points for the agents involved in the dialogue, the former
indicating its commencement and the latter its termination [14]. The conflict recogni-
tion stage, the initial interaction between the agents, brings the conflict to the surface.
Subsequently, the diagnosis stage allows the agents to establish the root cause of the
conflict and also to decide on how to address it (i.e., whether to avoid the conflict or at-
tempt to manage and resolve it through argumentation and negotiation [10]). Next, the
conflict management stage allows the agents to argue and negotiate, thus, addressing
the cause of this conflict. Finally, the agreement stage brings the argument to an end,
either with the participants agreeing on a mutually acceptable solution or agreeing to
disagree due to the lack of such a solution. In operation, it is defined as a dialogue game
protocol which gives locutions rules (indicating the moves that are permitted), com-
mitment rules (defining the commitments each participant incurs with each move), and
structural rules (specifying the types of moves available following the previous move).
Figure 2 presents these locutions and structural rules in abstract.

2.4 Decision Making Functionality

The protocol described above gives agents a number of different options, at various
stages, as to what utterances to make. For instance, after a proposal the receiving agent
could either accept or reject it. After a rejection, the agent may choose to challenge
this rejection, end the dialogue, or forward an alternative proposal. An agent, therefore,
still requires a mechanism for selecting a particular utterance among the available legal
options. To this end, for each of the possible dialogue moves, we specify general de-
cision making algorithms to give the agents that capability. Specifically, Algorithms 1
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and 2 show two such examples, the former for generating a proposal and the latter for
evaluating such a proposal. In abstract, a proposal in our formulation has two aspects;
the request and the reward. Thus, when generating a proposal the agent would assess
two aspects (i) if it is capable of performing the reward and (ii) the benefit it gains from
the request (Bai

do(aj,θj )) is greater than the cost of reward (Cai
do(ai,θi)

) (Algorithm 1). On
the other hand, when evaluating a proposal, the agent will consider (i) if it is capable of
performing the request and (ii) that the benefit of the reward (B

aj

do(ai,θi)
) is greater than

the cost incurred in performing the request (C
aj

do(aj,θj)) (Algorithm 2).

3 Argumentation Context

To evaluate how our argumentation model can be used as a means of managing social
influences, we require a computational context in which a number of agents interact in
the presence of social influences and conflicts arise as a natural consequence of these
interactions. To this end, we now proceed to detail how we map our general framework
into a specific multi-agent task allocation scenario. We first provide an overview de-
scription of the scenario and then proceed to explain how we map the notion of social
influence within it. Finally, we detail how the agents can use our ABN model to interact
within this social context and manage conflicts related to their social influences.

3.1 The Scenario

The argumentation context is based on a simple multi-agent task allocation scenario
(similar to that presented in [10]) where a collection of self-interested agents interact
to obtain services to achieve a given set of actions. In abstract, the context consists of
two main elements. On one hand, each agent in the system has a list of actions that
it is required to achieve. On the other hand, all agents in the system have different
capabilities to perform these actions. In this context, agents are allowed to interact and
negotiate between one another to find capable counterparts that are willing to sell their
services to perform their actions. The following introduce these main elements in more
detail:

Capability: All agents within the domain have an array of capabilities. Each such ca-
pability has two parameters: (i) a type value (x) defining the type of that capability and
(ii) a capability level (d ∈ [0, 1]) defining the agent’s competence level in that capability
(1 indicates total competence, 0 no competence). Given this, we denote a capability as
c(x,d) : [x, d].
Action: Each action has four main parameters: (i) the specified time (ti) the action
needs to be performed, (ii) the capability type (x) required to perform it, (iii) the mini-
mum capability level (dm) required, and (iv) the reward (ri; distributed normally with
a mean μ and a standard deviation σ) the agent would gain if the action is completed.
Given this, we denote an action as θi : [ti, c(x,dm), ri].

Each agent within the context is seeded with a specified number of such actions. This
number varies randomly between agents within a pre-specified range. Table 1 depicts
one such sample scenario for a three agent context (a0, a1, and a2) with their respective
capabilities and actions.
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Table 1. A Sample Scenario

Time a0 a1 a2

c(0,0.9), c(1,0.1) c(0,0.1), c(1,0.9) c(0,0.4), c(1,0.5)

t0 θ0 : [c(0,0.5), 200] θ0 : [c(1,0.2), 500] θ0 : [c(1,0.5), 700]

t1 θ1 : [c(1,0.3), 900] θ1 : [c(0,0.4), 300] θ1 : [c(1,0.7), 100]

t2 θ2 : [c(1,0.1), 400] θ2 : [c(0,0.8), 900]

t3 θ3 : [c(0,0.9), 600]

3.2 Modelling Social Influences

Given our argumentation context, we now describe how social influences are mapped
into it. In order to provide the agents with different social influences, we embody a role-
relationship structure into the multi-agent society. To do so, first, we define a specific
number of roles and randomly link them to create a web of relationships. This defines
the role-relationship structure. Figure 3(a) shows an example of such a representation
between 3 roles: r1, r2, and r3, where 1 indicates that a relationship exists between the
two related roles, and 0 indicates no relationship.

Given this role-relationship structure, we now randomly specify social commitments
for each of the active relationship edges (those that are defined as 1 in the mapping). A
social commitment in this context is a commitment by one role, to another, to provide
a certain type of capability when requested. As per Section 2.1, an important compo-
nent of our notion of social commitment is its associated degree of influence. Thus, not
all social commitments influence the agents in a similar manner (for more details refer
to [12]). Here, we map these different degrees of influence by associating each social
commitment with a decommitment penalty. Thus, any agent may violate a certain social
commitment at any given time. However, it will be liable to pay the specified decommit-
ment value for this violation (this is similar to the notion of levelled commitments intro-
duced in [18]). Since all our agents are self-interested, they prefer not to lose rewards
in the form of penalties, so a higher decommitment penalty yields a stronger social
commitment (thereby, reflecting a higher social influence). The following represents
such a mapping. For instance, in Figure 3(b) the entry [400:100] in row 1, column 2
indicates that the role r0 is committed to provide capabilities c0 and c1 to a holder of
the role r1. If the agent holding the role r0 chooses not to honour this commitment it
will have to pay 400 and 100 (respectively for c0 and c1) if asked. Having designed this
social structure and the associated social commitments, finally we assign these roles to
the actual agents operating within our system as shown in Figure 3(c).

From this representation, we can easily extract the rights and the obligations of each
agent within our system. For instance, the agent-role mapping shows the fact that agent
a0 acts the role r0. Given this, its obligations and rights can be extracted as follows:

• Obligation to provide:
- c0 to an agent acting r1; obliged to pay 400 if decommitted.
- c1 to an agent acting r1; obliged to pay 100 if decommitted.

• Rights to demand:
- c0 from an agent acting r1; right to demand 200 if decommitted.
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r0 r1 r2
r0 0 1 0
r1 1 0 1
r2 0 1 0

(a) Rol-Rel map-

ping.

r0 r1 r2
r0 [0:0] [200:0] [0:0]
r1 [400:100] [0:0] [200:600]
r2 [0:0] [700:200] [0:0]

(b) Social commitment mapping.

r0 r1 r2
a0 1 0 0
a1 0 1 1
a2 0 1 0

(c) Ag-Rol map-

ping.

Fig. 3. Social Influence Model

Given this global representation of social influence, we will now detail how we seed
these agents with this information. Since one of the aims in our experiments is to test
how agents use argumentation to manage and resolve conflicts created due to incom-
plete knowledge about their social influences, we generate a number of settings by
varying the level of knowledge seeded to the agents. More specifically, we give only
a subset of the agent-role mapping.3 We achieve this by randomly replacing certain 1s
with 0s and give this partial knowledge to the agents during initialisation. Thus, a cer-
tain agent may not know all the roles that it or another agent may act. This may, in turn,
lead to conflicts within the society, since certain agents may know certain facts about
the society that others are unaware of. By controlling this level of change, we generate
an array of settings ranging from perfect knowledge (0% missing knowledge) in the so-
ciety, to the case where agents are completly unaware of their social influences (100%
missing knowledge).

To explain this further, consider for instance that when initialising a0 we seeded it with
an incomplete agent-role map by replacing the 1 in column 1, row 1 with a 0. Thus, a0 is
unaware that it is acting the role r0. As a result, it is not aware of its ensuing obligations
and rights highlighted above. Now, when agents interact within the society this may lead
to conflicts between them. For example, if a0 refused to provide c0 to a1, it may request
that the violation penalty of 400 be paid. However, since a0 is unaware of its obligation
it will not pay the amount. On the other hand, when initialising a0 if we replace the 1 in
column 2, row 3 with a 0, a0 would now be unaware of its obligations towards agent a2
since its lacks the information that its counterpart a2 acts the role r1. This, in turn, would
also lead to conflicts with the society. In these situations, agents can use the argumentation
process explained in Section 3.3 to argue and resolve such conflicts.

3.3 Agent Interaction

Having detailed the multi-agent context, we now proceed to discuss how the agents can
use our ABN model to interact within this social setting. As mentioned in Section 3.1,

3 Theoretically it is possible to introduce imperfections to all the premises within the schema
(i.e., Act(ai, ri), RoleOf(ri, p), AssocWith(SCri←rj , p), InfluenceOf(O, f) etc.; see Sec-
tion 2.1). However, since the objective of our experiments is to prove the concept of how
arguments can resolve conflicts, instead of designing an exhaustive implementation with all
possible imperfections and arguments, we chose to concentrate on the first two premises. In-
creasing the imperfections would merely increase the reasons why a conflict may occur, thus,
bringing more arguments into play. However, this would have little bearing on the general
pattern of the results.
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Algorithm 3. The negotiate() method. Algorithm 4. The argue() method.

1: [p0, p1, . . . , pmax]← generateProposals()
2: p← p0
3: isAccepted ← false
4:
5: {Loop till either the agent agrees or the last proposal

fails.}
6: while (isAccepted �= true ‖ p ≤ pmax) do
7: response ← PROPOSE(p)
8: if (response = “accept′′) then
9: isAccepted ← true
10: else
11: if (p �= pmax) then
12: p← getNextViableProposal()
13: end if
14: end if
15: end while
16: return isAccepted

1: {Challenge for the opponent’s justification}
2: Ho ← challenegeJustification()
3: {Generate personal justification}
4: Hp ← generateJustification()
5:
6: if (isV alid(Ho) = false) then
7: {Assert invalid premises of Ho}
8: else
9: {Adopt premises of Ho into personal knowl-

edge}
10: end if
11: if (isV alid(Hp) = false) then
12: {Correct invalid premises of Hp within per-

sonal knowledge}
13: else
14: {Assert Hp}
15: end if

agents within the system argue and negotiate with each other to find willing and capable
partners to accomplish their actions. In essence, an agent that requires a certain capabil-
ity will generate and forward proposals to another selected agent within the community
requesting it to sell its services in exchange for a certain reward (Algorithm 1). If the
receiving agent perceives this proposal to be viable and believes it is capable of per-
forming it, then will accept it. Otherwise it will reject the proposal (Algorithm 2). In
case of a reject, the original proposing agent will attempt to forward a modified pro-
posal. The interaction will end either when one of the proposals is accepted or when all
valid proposals that the proposing agent can forward are rejected (Algorithm 3). In this
context, the two main elements of the negotiation interaction are:

Proposal Generation: When generating a proposal, an agent needs to consider two as-
pects (Algorithm 1): (i) whether it is capable of carrying out the reward and (ii) whether
the benefit it gains from the request is greater than the cost incurred while performing
the reward. To simplify the implementation, we constrain our system to produce pro-
posals with only monetary rewards. Thus, the generic proposal from an agent ai to an
agent aj takes the form PROPOSE(do(aj, θj), do(ai, m)) where θj is the requested ac-
tion and m the monetary reward. In this context, calculating the benefit and the cost
becomes straight forward. The benefit is the request rj associated with the action θj

and the cost of reward is m the monetary reward. Given this, the agent would generate
an array of proposals with increasing amounts of monetary rewards, the lowest being 1
and the highest being (rj − 1).

Proposal Evaluation: When the receiving agent evaluates a proposal it also considers
two analogous factors: (i) whether it is capable of performing the request and (ii) if
the benefit it gains from the reward is greater than the cost of carrying out the request
(Algorithm 2). To evaluate capability, the agent compares its own level with the min-
imum required to perform the action. In this case, the cost is the current opportunity
cost. Here, all agents have a minimum asking price (set to μ the mean reward value,
see Section 3.1) if they are not occupied, or, if they are, the cost is the reward plus the
decommitment cost of the previously agreed action. The benefit, in the simplest case,



Managing Social Influences Through Argumentation-Based Negotiation 119

Algorithm 5. Claim-Penalty-Non-Argue strategy. Algorithm 6. Claim-Penalty-Argue strategy.

1: isAccepted← negotiate()
2: if (isAccepted = false) then
3: compensation← demandCompensation()
4: end if

1: isAccepted← negotiate()
2: if (isAccepted = false) then
3: compensation← demandCompensation()
4: if (compensation < rightToPenalty) then
5: argue()
6: end if
7: end if

is the monetary value of the reward m. However, if the agent has a social commitment
to provide that capability type to the requesting agent, then the benefit is the monetary
reward plus the decommitment penalty of this social commitment.

Given the negotiation interaction, we will now detail how agents argue (Algorithm 4)
to resolve conflicts within the multi-agent society (such as the one highlighted in
Section 3.2). Agents first detect conflicts by analysing the decommitment penalties paid
by their counterparts for violating their social commitments. In more detail, when an
agent with the right to demand a certain capability claims the penalty form another for
violating its obligation and the amount paid in response is different from the amount it
expects to receive, the agents would detect the existence of a conflict. Once such a con-
flict is detected agents attempt to resolve it by exchanging their respective justifications.
These justifications would take the form of the social influence schema (see Equations 5
and 6 in Section 2.1) and are then analysed to diagnose the cause of the conflict. If there
are inconsistencies between them, social arguments (Section 2.2; Type-1) are used to
highlight these. If they are both valid, then each agent would point-out alternative jus-
tifications via asserting missing knowledge (Section 2.2; Type-2). The defeat-status is
computed via a validation heuristic, which simulates a defeasible model such as [1].

4 Managing Social Influences

As mentioned in Section 1, when agents operate within a society with incomplete
knowledge and with diverse and conflicting influences, they may, in certain instances,
lack the knowledge, the motivation and/or the capacity to enact all their social commit-
ments. In some cases, therefore, an agent may violate specific social commitments in
favour of abiding by a more influential internal or external motivation. In other cases
it may inadvertently violate such commitments simply due to the lack of knowledge
of their existence. However, to function as a coherent society it is important for these
agents to have a means to resolve such conflicts and manage their social influences in
a systematic manner. Against this background, we will now investigate a number of
different interaction strategies that allow the agents to manage their social influences
within a multi-agent context. The underlying motivation for these strategies is our so-
cial influence schema (see Section 2.1), which gives the agents different rights; namely
the right to demand compensation and the right to challenge non-performance of social
commitments. Specifically, in the following we use our ABN model to design both ar-
guing and non-arguing strategies to implement these forms of interactions and assess
their relative performance benefits.
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The experiments are set within the context described in Section 3 with 20 agents,
each having 3 capabilities with different levels of competence (varied randomly). The
number of actions each agent has vary between 20 and 30, while their respective rewards
are set according to a normal distribution with a mean 1,000 and a standard deviation
500. We use two metrics to evaluate the overall performance of the different strategies
(similar to [10,16]): (i) the total earnings of the population as a measure of effectiveness
(the higher the value, the more effective the strategy) and (ii) the total number of mes-
sages used by the population as a measure of efficiency (the lower the value, the more
efficient the strategy). Here all reported results are averaged over 40 simulation runs to
diminish the impact of random noise, and all observations emphasised are statistically
significant at the 95% confidence level.

4.1 Demanding Compensation

If an agent violates a social commitment, one of the ways its counterpart can react is
by exercising its right to demand compensation. This formulates our baseline strategy
which extends our negotiation algorithm by allowing the agents to demand compen-
sation in cases where negotiation fails (Algorithm 5). Once requested, the agent that
violated its social commitment will pay the related penalty.4 However, in imperfect in-
formation settings, a particular agent may violate a social commitment simply because
it was not aware of it (i.e., due to the lack of knowledge of its roles or those of its coun-
terparts). In such situations, an agent may pay a decommitment penalty different to what
the other believes it should get, which may, in turn, lead to conflicts. In such situations,
our second strategy allows agents to use social arguments to argue about their social
influences (as per Section 2.2) and, thereby, manage their conflicts (Algorithm 6). Our
hypothesis here is that by allowing agents to argue about their social influences we are
providing them with a coherent mechanism to manage and resolve their conflicts and,
thereby, allowing them to gain a better outcome as a society. To this end, the former
strategy acts as our control experiment and the latter as the test experiment. Figures 4
and 5 show our results from which we make the following observations:

Observation 1: The argumentation strategy allows agents to manage their social influ-
ences even at high uncertainty levels.

If agents are aware of their social influences, they may use them as parameters within
their negotiation interactions. Thereby, agents can endorse certain actions which may
otherwise get rejected (see Section 2.2). This would, in turn, increase the population
earnings as more actions are accomplished. However, if the agents are not aware of
their social influences they may not be able to use these influences to endorse such
actions. Therefore, we can observe a downward trend in the population earnings for
both strategies as the agent’s knowledge level about their social influences decrease (0
on the X-axis indicates perfect information, whereas, 100 represents a complete lack

4 To reduce the complexity, here, we assume that our agents do not attempt to deceive one
another. Thus an agent will either honour its obligation or pay the penalty. We could drop this
assumption and make it more realistic by incorporating trust and reputation mechanism into
the system. However, this is beyond the scope of this paper.
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Fig. 4. Efficiency and Effectiveness of the Argue and Non-Argue strategies with 20 Agents and 3
Roles

of knowledge about the social structure). However, we can observe that the non-argue
strategy falls more rapidly than the argue one. This is because the argue method allows
agents to manage and resolve conflicts of opinion that they may have about their social
influences. For instance, if a certain agent is unaware of a role that another acts, it may
correct this through arguing with that agent. Thus, arguing allows agents to correct
such gaps in their knowledge and, thereby, resolve any conflicts that may arise as a
result. In this manner, ABN allows the agents to manage their social influences even at
high uncertainty levels. Thereby, as a society, the agents can accomplish more of their
actions and gain a higher total earnings value. The non-arguing approach, which does
not allow them to argue about their social influences and manage such conflicts, reduces
the population earnings as knowledge imperfections increase within the social system.

Observation 2: In cases of perfect information and complete uncertainty, both strate-
gies perform equally.

The reason for both strategies performing equally when there is perfect information
(0 level) is because there are no knowledge imperfections. In other words, agents do
not need to engage in argumentation to correct conflicts of opinions simply because
such conflicts do not exist. On the other hand, the reason for both strategies performing
equally when there is a complete lack of knowledge is more interesting. Since, none of
the agents within the society are aware of any social influences (even though they exist)
they are not able to detect any conflicts or violations. Consequently, agents do not resort
to arguing to manage such conflicts (see conflict recognition stage in Section 2.3). Thus,
when there is a complete lack of knowledge, the strategy that uses the argue strategy
performs the same as the non-argue one.

Observation 3: At all knowledge levels, the argumentation strategy exchanges fewer
messages than the non-arguing one.

Figure 4(b) shows the number of messages used by both strategies under all knowledge
levels. Apart from the two end points, where argumentation does not occur (see Ob-
servation 2), we can clearly see the non-arguing strategy exchanging more messages
(is less efficient) than the argue one. The reason for this is that even though agents use
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Fig. 5. Total population earnings with 20 agents and a varying number of roles

some number of messages to argue and correct their incomplete knowledge, thereafter
the agents use their corrected knowledge in subsequent interactions. However, if the
agents do not argue to correct their knowledge imperfections, they negotiate more fre-
quently since they cannot use their social influence. Thus, this one-off increase of argue
messages becomes insignificant when compared to the increase in the propose, accept,
and reject messages due to the increased number of negotiations.

Observation 4: When there are more social influences within the system, the perfor-
mance benefit of arguing is only significant at high levels of knowledge incompleteness.

Figure 4(a) and Figures 5(a) through 5(d) show the effectiveness of both the strategies
as the number of roles increases within the society. One of the key observations here
is the decline rate of the non-argue strategy. We can see that as the number of roles
increase, the rate of decline of the non-argue method becomes less pronounced. Fur-
thermore, the crossover point where the non-argue method starts to be less effective
than the argue strategy also shifts increasingly to the right (higher knowledge imper-
fections). In Figures 5(a) though 5(d) this level is roughly 50%, 70%, 80%, 90%. This
again is a very interesting observation. As agents gain a higher number of roles, they
aquire an increasing number of social influences. Now, as explained in Observation 1,
the agents use these social influences as a resource to endorse their actions. Thus, when
an agent has a higher number of social influences, its lack of knowledge about a certain
particular influence makes little difference. The agent can easily replace it with another
influence (which it is aware of) to convince its counterpart. Therefore, under such con-
ditions, agents arguing about their social influences to correct their lack of knowledge
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would have little reward since the non-argue method can more simply replace it with
another known influence and still achieve the same end. Only when an agent has a near
complete lack of knowledge (i.e., 80%, 90%) does the argue strategy yeild significant
performance gains. This observation complements our previous emperical study on the
worth of argumentation at varying resource levels [10]. There we show that the bene-
fit of arguing is more pronounced at low resource settings and under higher resource
conditions the benefit is less.

4.2 Questioning Non-performance

In the event that a particular social commitment is violated, apart from the right to
demand compensation, our social influence schema also gives the agents the right to
challenge and demand a justification for this non-performance (see Section 2.1). It is
generally argued in ABN theory that allowing agents to exchange such meta-information
in the form of justifications gives them the capability to understand each others’ rea-
sons and, thereby, provides a more efficient method of resolving conflicts under uncer-
tainty [15]. In a similar manner, we believe that providing the agents with the capability
to challenge and demand justifications for violating social commitments also allows the
agents to gain a wider understanding of the internal and social influences affecting their
counterparts, thereby, providing a more efficient method for managing social influences
in the presence of incomplete knowledge.

This intuition forms the underlying hypothesis for our next set of experiments. More
specifically, we use our previous best strategy Claim-Penalty-Argue as the control
experiment and design two other strategies (Argue-In-First-Rejection and Argue-In-
Last-Rejection) to experiment with the effect of allowing the agents to challenge non-
performance at different stages within the negotiation encounter. The former allows the
agent to challenge after the receipt of the first rejection and the latter after the last re-
jection. Thus, the two differ on when the agent attempts to find the reason (in the first
possible instance or after all proposals have been forwarded and rejected).5 Figures 6(a)
and 6(b) show our results and the following highlight our key observations:

Observation 5: The effectiveness of the various argumentation strategies are broadly
similar.

Figure 6(a) shows no significant difference in the effectiveness of the three ABN strate-
gies. This is due to the fact that all three strategies argue and resolve the conflicts even
though they decide to argue at different points within the encounter. Therefore, we do
not expect to have any significant differences in number of conflicts resolved. Thus, the
effectiveness stays the same.

Observation 6: Allowing the agents to challenge earlier in the dialogue, significantly
increases the efficiency of managing social influences.

Figure 6(b) shows a significant difference in the number of messages used by the three
strategies at all levels of knowledge. In more detail, the number of messages used by the

5 Due to space restrictions we avoid specifying the algorithms for these two strategies here. For
a more detailed specification refer to [9].
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Fig. 6. Efficiency and Effectiveness of the various argumentation strategies

Argue-In-Last-Rejection strategy is significantly lower than our original Claim-Penalty-
Argue one. Moreover, the Argue-In-First-Rejection strategy has the lowest number of
messages exchanged. The reason for this behaviour is based on how the agents use
these reasons exchanged during the argue phase. In the Claim-Penalty-Argue strategy
the main objective of arguing is to resolve the conflict regarding the penalty value that
should be paid. However, it does not attempt to find out the reason for why its counter-
part rejected its proposal. For instance, one reason could be the lack of capability. An-
other could be the reward of the proposal is not high enough to cover the cost. By chal-
lenging the reason for the rejection, the latter two strategies gain this meta-information
which the agents constructively use in their subsequent interactions. For instance, if the
counterpart rejected the proposal due to lack of capability, it can be excluded in future
if the agent requires a capability which is equal or greater. In this way such reasons give
useful meta-information to the agents for their future negotiations. So these strategies
allow the agents to exploit such information and interact more efficiently as a society.
Arguing in the first rejection provides this information earlier in the negotiation, which,
in turn, gives the agent more capacity to exploit such information (even in the present
negotiation) than getting it in the last encounter. Given this, we can conclude that in
our context allowing the agents to challenge non-performance earlier in the negotiation
allows them to manage their social influences more efficiently as whole.

5 Related Work

As highlighted in Section 1, to function as a coherent society, agents operating within a
multi-agent society need the ability to detect, manage, and resolve conflicts in a system-
atic manner. Here, we will compare our ABN approach with two others suggested in the
multi-agent literature. First, we note the work of [7] on electronic institutions where com-
mitments of agents resulting due to social influences are managed through a performative
structure. In more detail, they use a central authority to ensure that such commitments
are upheld by controlling the type of locutions agents can issue in certain contexts based
on the state of their commitments. In a similar vein, [8] provides a mechanism to control,
verify, and manipulate commitments through the use of a state machine. Now, one of the
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key distinctions of our approach from these is the absence of a central authority. Ours
is a decentralised model where agents detect, manage and resolve conflicts about their
social influences by arguing between each other. Another key feature in our method is
its ability to function under incomplete knowledge. On the other hand, both the above
approaches assume complete information within the central entity.

Our ABN framework also extends current ABN research by allowing the agents to
argue, negotiate and manage conflicts in a multi-agent society. When compared against
the model of Kraus et al. [13] our framework has two distinct advantages. First, ours ex-
pressly takes into account the impact of society by way of social commitments, whereas
their main focus is in formulating interactions between two agents. Second, they do not
take into account the impact of incomplete information. In contrast, our social argu-
ments captured in Section 2.2 allow agents to argue about their social influences and
overcome such conflicts within a society. The work of Sierra et al. [19] is an important
initial attempt to extend the work of [13] to a social context. Similar to our approach
(and unlike [13]) they allow agents to argue in social contexts with imperfect informa-
tion. However, they only consider authority based relationships, which we believe only
capture a specialised form of social context (i.e., institutions or formal organisations).
Our work, on the other hand, presents a more generic way of capturing social influences
of roles and relationships (i.e., using social commitment with different degrees of influ-
ence), thus allowing agents’ the ability to argue, negotiate and resolve conflicts under
disparate social influences.

6 Conclusions and Future Work

The incomplete knowledge and the diverse conflicting influences present within a multi-
agent society may prevent agents from abiding by all their social influences. In such
situations, in order to function as a coherent society, agents require a mechanism to
manage their social influences in a systematic manner. To this end, this paper develops a
novel ABN approach that allows agents to argue, negotiate and, thereby, achieve a con-
sensus, about their social influences. Furthermore, in order to assess the performance
benefits of our proposed method, we carry out an empirical analysis by implementing
such an ABN approach in a multi-agent task allocation context. Our results can be sum-
marised as three main points. First, our method is shown to be both a more efficient and
a more effective strategy in managing social influence even at high uncertainty levels
when compared to a non-arguing approach. Second, we show that our approach can be
further enhanced in terms of efficiency by allowing agents to challenge one another ear-
lier in the negotiation encounter and using the meta-information that is gained to guide
future negotiation encounters. Third, we show that both under complete uncertainty and
when there are abundant social influences available in the society, the effectiveness of
our approach is not significantly different from a non-arguing one.

In the future, we aim to expand our approach by allowing the agents to explicitly
trade social influences in the form of threats and promises (as per Section 2.2) and ex-
amine the effect of so doing. At the moment agents only implicitly use these social
influences to endorse their proposals. In such a system, we also plan to experiment with
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the effect of using different argument selection strategies in order to identify if certain
strategies allow the agents to argue more efficiently or effectively than others.
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Abstract. Modeling different types of dialog between autonomous agents is be-
coming an important research issue. Several proposals exist with a clear definition
of the dialog protocol, which is the set of rules governing the high level behavior
of the dialog. However, things seem different with the notion of strategy. There is
no consensus on the definition of a strategy and on the parameters necessary for
its definition. Consequently, there are no methodology and no formal models for
strategies.

This paper argues that a strategy is a decision problem that consists of: i) se-
lecting the type of act to utter at a given step of a dialog, and ii) selecting the
content that will accompany the act. The first kind of decision amounts to select-
ing among all the acts allowed by the protocol, the best option which according to
some strategic beliefs of the agent will at least satisfy the most important strate-
gic goals of the agent. The second kind of decision consists of selecting among
different alternatives (eg. different offers), the best one that, according to some
basic beliefs of the agent, will satisfy the functional goals of the agent. The paper
proposes then a formal model based on argumentation for computing on the basis
of the above kinds of mental states, the best move (act + content) to play at a
given step of the dialog. The model is illustrated through an example of auctions.

1 Introduction

An increasing number of software applications are being conceived, designed, and im-
plemented using the notion of autonomous agents. These applications vary from email
filtering [10], through electronic commerce [12,16], to large industrial applications [6].
In all of these disparate cases, however, the agents are autonomous in the sense that they
have the ability to decide for themselves which goals they should adopt and how these
goals should be achieved [17]. In most agent applications, the autonomous components
need to interact with one another because of the inherent interdependencies which exist
between them. They need to communicate in order to resolve differences of opinion and
conflicts of interest that result from differences in preferences, work together to find so-
lutions to dilemmas and to construct proofs that they cannot manage alone, or simply to
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inform each other of pertinent facts. Many of these communication requirements can-
not be fulfilled by the exchange of single messages. Instead, the agents concerned need
to be able to exchange a sequence of messages which all bear upon the same subject.
In other words they need the ability to engage in dialogs. In [15] different categories
of dialogs have been distinguished including persuasion and negotiation. Work in the
literature has focused on defining formal models for these dialog types. Generally, a di-
alog system contains the following three components: the agents involved in the dialog
(i.e their mental states), a dialog protocol and a set of strategies. The dialog protocol is
the set of rules of encounter governing the high-level behavior of interacting agents. A
protocol defines among other things:

– the set of permissible acts (eg. asking questions, making offers, presenting argu-
ments, etc.);

– the legal replies for each act.

A dialog protocol identifies the different possible replies after a given act. However, the
exact act to utter at a given step of the dialog is a strategy matter. While the protocol is
a public notion, strategy is crucially an individualistic matter. A strategy can be seen as
a two steps decision process:

1. among all the possible replies allowed by the protocol, to choose the move to play.
For instance, in a negotiation dialog, the protocol may allow after an offer act the
following moves: accepting/rejecting the offer or making a new offer.

2. to choose the content of the move if any. In the above example, if the agent chooses
to make a new offer, it may decide among different alternatives the best one to
propose.

In most works on modeling dialogs, the definition of a protocol poses no problems.
However, the situation is different for dialog strategies. There is no methodology and
no formal models for defining them. There is even no consensus on the different in-
gredients involved when defining a strategy. Regarding persuasion dialogs, there are
very few works devoted to the notion of strategy in the literature if we except the
work done in [2,7]. In these works, different criteria have been proposed for the ar-
gument selection. As for negotiation dialogs, it has been argued that the game-theoretic
approaches characterize correctly optimal strategies [8,13]. However, another line of
research [5,9,11,14] has emphasized the limits of game-theoretic approaches for nego-
tiation, and has shown the interest of arguing during a negotiation. Consequently, the
optimal strategies given by game theory are no longer valid and not suitable. In [3], the
authors have studied the problem of choosing the best offer to propose during a dialog
and several criteria have been suggested. However, in that framework, the act offer is
supposed to be chosen by the agent. Thus, this work has focused only on the second
step of the decision process.

This paper argues that the strategy is a decision problem in which an agent tries to
choose among different alternatives the best option, which according to its beliefs, will
satisfy at least its most important goals. Two kinds of goals (resp. of beliefs) are dis-
tinguished: the strategic and the functional goals (resp. the strategic and basic beliefs).
The strategic goals are the meta level goals of the agent. Such goals will help an agent,
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on the basis of the strategic beliefs, to select the type of act to utter. Regarding func-
tional goals, they will help an agent to select on the basis of the basic beliefs the content
of a move.

We propose a formal model for defining strategies. The model takes as input two sets
of goals: the strategic and the functional goals together with the strategic and basic be-
liefs and returns among the possible replies allowed by the protocol after a given act, the
next move (act + its content) to play. The model is an extension of the argument-based
decision framework proposed in [1]. The basic idea behind this model is to construct for
each alternative the different arguments (reasons) supporting it, then to compare pairs
of alternatives on the basis of the quality of their supporting arguments.

The paper is organized as follows: Section 2 presents the different classes of goals
and beliefs maintained by an agent. Section 3 introduces the logical language which
will be used throughout the paper. Section 4 introduces an abstract argumentation-
based decision model which forms the backbone of our approach. Section 5 presents
an instantiation of that abstract model for computing the best move to play among the
different replies allowed by the protocol. Section 6 introduces a second instantiation of
the abstract model for computing the content of the move selected by the first instantia-
tion. The whole framework is then illustrated in section 8. Section 9 is devoted to some
concluding remarks and some perspectives.

2 Agents’ Mental States

During a dialog, an agent makes two decisions: it first selects the type of act to utter,
for instance making a new offer, asking a question or arguing. Once the act chosen, the
agent should select the content of the act if necessary. We say if necessary because some
acts such as “withdrawal” from a dialog does not need a content. However, for an act
“offer”, it is important to accompany the act with an appropriate content. If the agents
are negotiating the “price” of a car, then the act offer should contain a given price. The
two above decision problems involve two different kinds of goals:

Strategic goals: For choosing the type of act to utter, an agent refers to what we call
strategic goals. By strategic goals we mean the meta-level goals of the agent such
as “minimizing the dialog time”, “selling at the end of the dialog”, etc. Suppose
that at a given step of a negotiation dialog, an agent has to choose between making
an offer and asking a question. If the agent wants to minimize the dialog time
then it would choose to make an offer instead of spending more time in questions.
However, if the agent wants to get a maximum of information about the wishes
of the other agent, then the agent would decide to ask a question.These goals are
generally independent of the subject of the dialog. If the agents are negotiating the
place of a next meeting, then those goals are not related to the place.

Functional goals: The goals of the agent which are directly related to the subject of the
dialog are called functional goals. They represent what an agent wants to achieve
or to get regarding the subject of the dialog. Let us take the example of the agent
negotiation the place of a meeting. The agent may prefer a place which is not warm
and not expensive. The agent may also prefer a place with an international airport.
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These functional goals are involved when selecting the content of a move. In a
negotiation, an agent proposes offers that satisfy such goals.

As for goals, the beliefs involved in the two decision problems are also of different
nature:

Strategic beliefs that are the meta-level beliefs of the agent. They may represent the
beliefs of the agent about the dialog, and about the other agents involved in the
dialog. In negotiation dialogs where agents are trying to find a common agreement,
agents may intend to simulate the reasoning of the other agents. Thus it is important
for each agent to consider the beliefs that it has on the other agents’goals and be-
liefs. Indeed, a common agreement can be more easily reached if the agents check
that their offers may be consistent with what they believe are the goals of the others.

Basic beliefs represent the beliefs of the agent about the environment and the subject of
the dialog. Let us consider again the example of the agent negotiating the place of a
meeting. Basic beliefs of the agent may include for instance the fact that “London
is not warm”, “Tunisia is hot”, “London is very expensive”, etc. This base may also
contain some integrity constraints related to the dialog subject such as “the meeting
cannot be at the same time in London and in Algeria”.

3 The Logical Language

Let L be a propositional language, and Wff(L) be the set of well-formed formulas
built from L. Each agent has the following bases:

Bb = {(kp, ρp), p = 1, . . . , s}, where kp ∈ Wff(L), is the basic beliefs base. The
beliefs can be less or more certain. They are associated with certainty levels ρp. A
pair (kp, ρp) means that kp is at least certain at a degree ρp.

Bs = {(lj , δj), j = 1, . . . , m}, where lj ∈ Wff(L), is the strategic beliefs base. Each
of these beliefs has a certainty level δj .

Gs = {(gq, λq), q = 1, . . . , t}, where gq ∈ Wff(L), is a base of strategic goals.
The strategic goals can have different priority degrees, represented by λq . A pair
(gq, λq) means that the goal gq is important for the agent at least to a degree λq .

Gf = {(gor, γr), r = 1, . . . , v}, where gor ∈ Wff(L), is the base of the functional
goals of the agent. Each functional goal has a degree of importance denoted by γr.

The different certainty levels and priority degrees are assumed to belong to a unique lin-
early ordered scale with maximal element denoted by 1 (corresponding to total certainty
and full priority) and a minimal element denoted by 0 corresponding to the complete
absence of certainty or priority.

We shall denote by B∗b , B∗s , G∗s and G∗f the corresponding sets of propositional for-
mulas when weights (level and degree) are ignored.

Let S be the set of speech acts allowed by the protocol. S may contain acts such as
“’Offer’ for making offers in negotiation dialogs, “Question” for asking questions, “As-
sert” for asserting information such as “the weather is beautiful”, “Argue” for present-
ing arguments in persuasion dialogs, etc. The protocol precises for each act the possible
replies to it. Let us suppose that the function Replies: S �−→ 2S returns for each act, all
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the legal replies to it. Some acts may have a content. For instance, an act “Offer” should
be accompanied with a content such as a price, a town, etc. However, the act “With-
draw” does not need any content. Such acts will then have an empty content, denoted
by the symbol “?”. In what follows, the function Content: S �−→ 2Wff(L)∪{?} returns
for a given act, the set of its possible contents. For instance, Content(Withdraw) = ?,
Content(Offer) = {London, Algeria} if the object of negotiation is the place of next
holidays.

During a dialog, agents exchange moves which are pairs: a speech act and its content.
Formally:

Definition 1 (Moves). A move is a pair (a, x), where a ∈ S and x ∈ Content(a).

The strategy problem is formalized as follows:

Definition 2 (The strategy problem). Let (a, x) be the current move in a dialogue.
What is the next move (a′, x′) to utter such that a′∈ Replies(a) and x′ ∈ Content(a′) ?

To answer this question, one should find both a′ and x′. Indeed, a′ is the “best” ele-
ment in Replies(a) that satisfies G∗s according to B∗s , whereas x′ is the “best” element
among Content(a′) that satisfies G∗f according to B∗b .

4 The Abstract Argumentation-Based Decision Model

Recently, Amgoud [1] has proposed a formal framework for making decisions under
uncertainty on the basis of arguments that can be built in favor of and against a possible
choice. Such an approach has two obvious merits. First, decisions can be more easily
explained. Moreover, argumentation-based decision is maybe closer to the way humans
make decisions than approaches requiring explicit utility functions and uncertainty
distributions.

Solving a decision problem amounts to defining a pre-ordering, usually a complete
one, on a set X of possible choices (or decisions), on the basis of the different con-
sequences of each decision. In our case, the set X may be either the set Replies(a)
of the possible replies to a move, or the set Content(a). The basic idea behind an
argumentation-based model is to construct arguments in favor of and against each de-
cision, to evaluate such arguments, and finally to apply some principle for comparing
the decisions on the basis of the arguments and their quality or strengths. Thus, an
argumentation-based decision process can be decomposed into the following steps:

1. Constructing arguments in favor of /against each decision in X .
2. Evaluating the strength of each argument.
3. Comparing decisions on the basis of their arguments.
4. Defining a pre-ordering on X .

Definition 3 (Argumentation-based decision framework). An argumentation-based
decision framework is a tuple <X , A, �, �Princ> where:

- X is a set of all possible decisions, and A is a set of arguments.
- � is a (partial or complete) pre-ordering on A.
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- �Princ (for principle for comparing decisions), defines a (partial or complete) pre-
ordering on X , defined on the basis of arguments.

The output of the framework is a (complete or partial) pre-ordering �Princ, on X . x1
�Princ x2 means that the decision x1 is at least as preferred as the decision x2 w.r.t. the
principle Princ.

Notation: Let A, B be two arguments of A. If � is a pre-order, then A � B means that
A is at least as ‘strong’ as B. � and ≈ will denote respectively the strict ordering and
the relation of equivalence associated with the preference between arguments. Hence,
A � B means that A is strictly preferred to B. A ≈ B means that A is preferred to B
and B is preferred to A.

Different definitions of � or different definitions of �Princ may lead to different
decision frameworks which may not return the same results. In what follows, Arg(x)
denotes the set of arguments in A which are in favor of x.

At the core of our framework is the use of a principle that allows for an argument-based
comparison of decisions. Indeed, these principles capture different profiles of agents
regarding decision making. Below we present one intuitive principle Princ, i.e agent
profile. This principle, called promotion focus principle (Prom), prefers a choice that has
at least one supporting argument which is preferred to (or stronger than) any supporting
argument of the other choice. Formally:

Definition 4 (Promotion focus). Let <X , A, �, �Prom> be an argumentation-based
decision framework, and Let x1, x2 ∈ X .
x1 �Prom x2 w.r.t Prom iff ∃ A ∈ Arg(x1) such that ∀ B ∈ Arg(x2), A � B.

Obviously, this is a sample of the many principles that we may consider. Human de-
ciders may actually use more complicated principles.

5 The Strategic Decision Model

This section presents an instantiation of the above model in order to select the next
move to utter. Let us recall the strategy problem. Let (a, x) be the current move in a
dialog. What is the next move (a′, x′) to utter such that a′ ∈ Replies(a′) and x′ ∈
Content(a′)? The strategic decision model will select among Replies(a) the best act
to utter, say a′. Thus, the set Replies(a) will play the role of X .

Let us now define the arguments in favor of each d ∈ Replies(a). Those arguments
are built from the strategic beliefs base Bs of the agent and its strategic goals base Gs.

The idea is that a decision is justified and supported if it leads to the satisfaction of
at least the most important goals of the agent, taking into account the most certain part
of knowledge. Formally:

Definition 5 (Argument). An argument in favor of a choice d is a triple A = <S, g,
d> such that:

- d ∈ Replies(a),
- S ⊆ B∗s and g ∈ G∗s
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- S ∪ {d} is consistent
- S ∪ {d} � g
- S is minimal (for set inclusion) among the sets satisfying the above conditions.

S is the support of the argument, g is the goal which is reached by the choice d, and d
is the conclusion of the argument. The set As gathers all the arguments which can be
constructed from <Bs, Gs, Replies(a)>.

Since the bases Bs and Gs are weighted, arguments in favor of a decision are more or
less strong.

Definition 6 (Strength of an Argument). Let A = <S, g, d> be an argument in As.
The strength of A is a pair <Levels(A), Weights(A)> such that:

- The certainty level of the argument is Levels(A) = min{ρi | ki ∈ S and (ki, ρi) ∈
Bs}. If S = ∅ then Levels(A) = 1.

- The degree of satisfaction of the argument is Weights(A) = λ with (g, λ) ∈ Gs.

Then, strengths of arguments make it possible to compare pairs of arguments as follows:

Definition 7. Let A and B be two arguments in As. A is preferred to B, denoted A �s

B, iff min(Levels(A), Weights(A)) ≥ min(Levels(B), Weights(B)).

Property 1. The relation �s is a complete preorder (�s is reflexive and transitive).

Now that the arguments are defined, we are able to present the strategic decision model
which will be used to return the best reply a′ at each step of a dialog.

Definition 8 (Strategic decision model). A strategic decision model is a tuple
<Replies(a), As, �s, �Princ>.

According to the agent profile, a principle �Princ will be chosen to compare decisions.
If for instance, an agent is pessimistic then it will select the Prom principle and thus the
decisions are compared as follows:

Definition 9. Let a1, a2 ∈ Replies(a). a1 �Prom a2 w.r.t Prom iff ∃ A ∈ Arg(a1)
such that ∀ B ∈ Arg(a2), A �s B.

Property 2. The relation �Prom is a complete preorder.

Since the above relation is a complete preorder, it may be the case that several choices
will be equally preferred. The most preferred ones will be returned by the function
Best.

Definition 10 (Best decisions). The set of best decisions is Best(Replies(a)) = {ai ∈
Replies(a), s.t.∀ aj ∈ Replies(a), ai �Prom aj}.

The best move to play (or the next reply in a dialog) is a′ ∈ Best(Replies(a)).

Property 3. If As = ∅, then Best(Replies(a)) = ∅.

Note that when the set of arguments is empty, then the set of best decisions is also
empty. This means that all the decisions are equally preferred, and there is no way to
choose between them. In such a situation, the decision maker chooses one randomly.
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6 The Functional Decision Model

Once the speech act to utter selected by the previous strategic decision model, say a′

∈ Best(Replies(a)), one should select its content if necessary among the elements
of Content(a′). Here Content(a′) depends on the nature of the selected speech act.
For instance, if the selected speech act is an “Offer”, then Content(a′) will contain
different objects such as prices if the agents are negotiating a price of a product, different
towns if they are negotiating a place of the next holidays. Now, if the selected speech act
is “Argue” which allows the exchange of arguments, then the content of this act should
be an argument, thus Content(a′) will contain the possible arguments. In any case, we
suppose that Content(a′) contains a set of propositional formulas. Even in the case of
a set of arguments, every argument will be referred to it by a propositional formula.

Arguments in favor of each element in Content(a′) are built from the basic beliefs
base and the functional goals base.

Definition 11 (Argument). An argument in favor of a choice d is a triple A = <S, g,
d> such that:

- d ∈ Content(a′)
- S ⊆ B∗b and g ∈ G∗f
- S ∪ {d} is consistent
- S ∪ {d} � g
- S is minimal (for set inclusion) among the sets satisfying the above conditions.

S is the support of the argument, g is the goal which is reached by the choice d, and d
is the conclusion of the argument. The set Af gathers all the arguments which can be
constructed from <Bb, Gf , Content(a′)>.

The strength of these arguments is defined exactly as in the previous section by replac-
ing the corresponding bases.

Definition 12 (Strength of an Argument). Let A = <S, g, d> be an argument in Af .
The strength of A is a pair <Levelf(A), Weightf(A)> such that:

- The certainty level of the argument is Levelf(A) = min{ρi | ki ∈ S and (ki, ρi) ∈
Bb}. If S = ∅ then Levelf(A) = 1.

- The degree of satisfaction of the argument is Weightf(A) = λ with (g, λ) ∈ Gf .

Then, strengths of arguments make it possible to compare pairs of arguments as follows:

Definition 13. Let A and B be two arguments in Af . A is preferred to B, denoted
A �f B, iff min(Levelf(A), Weightf(A)) ≥ min(Levelf(B), Weightf(B)).

The functional model which computes the best content of a move is defined as follows:

Definition 14 (Functional decision model). A functional decision model is a tuple
<Content(a′), Af , �f , �Princ>.

Again according to the agent profile, a principle �Princ will be chosen to compare
decisions. If for instance, an agent is pessimistic then it will select the Prom principle
and thus the decisions are compared as follows:
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Definition 15. Let x1, x2 ∈ Content(a′). x1 �Prom x2 w.r.t Prom iff ∃ A ∈ Arg(x1)
such that ∀ B ∈ Arg(x2), A �f B.

Here again, the above relation is a complete preorder, and consequently several options
may be equally preferred.

Definition 16 (Best decisions). The set of best decisions is Best(Content(a′)) =
{xi ∈ Content(a′), s.t.∀ xj ∈ Content(a′), xi �Prom xj}.

The best content x′ to utter is an element of Best(Content(a′)) chosen randomly.

7 Computing the Next Move in a Dialogue

In the previous section, we have presented a formal framework for explaining, oredering
and making decisions. In what follows, we will show how that framework can be used
for move selection. Let (a, x) be the current move of the dialogue, and an agent has to
choose the next one, say (a′, x′). The act a′ is returned as a best option by the framework
<Replies(a), As, �s, �Prom> (i.e a′ ∈ Best(Replies(a))), whereas the content x′

is among the best options returned by the framework <Content(a′), Af , �f , �Prom>,
i.e. x′ ∈ Best(Content(a′)). The idea of computing the next move is sketched in the
following algorithm:

Algorithm 1. Computing the best move
Parameters: a current move (a, x), a theory 〈X , Bs, Bb, Gs, Gf 〉
1: X ← Replies(a);
2: while X �= ∅ do
3: if Best(X ) = ∅ then return (?, ?);
4: else a′ ∈ Best(Replies(a)) of the argumentation system 〈Replies(a),As, �s, �Prom〉

(a′ is chosen randomly);
5: if Content(a′) =? then return (a′, ?);
6: else
7: if Best(Content(a′)) = ∅ (best decisions of the argumentation system

〈Content(a′), Af , �f , �Prom〉) then X ← X − {a′};
8: else
9: return (a′, x′) with x′ ∈ Best(Content(a′));

The basic idea is to look for the best replies for an act a. In case there is no solution,
the answer will be (?, ?) meaning that there is no rational solution. This in fact corre-
sponds either to the situation the set of strategic goals is empty, or the case where no
alternative among the allowed replies satisfies the strategic goals of the agent.

In case there is at least one preferred solution, one should look for a possible con-
tent. If there is no possible content, then the chosen act is removed and the same process
is repeated with the remaining acts. Note that the case of the existence of a preferred
act but no its content is explained by the fact that the strategic goals of the agent are
not compatible with its functional goals. Moreover, two forms of incompatibilities are
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distinguished: strong incompatibility in which there is no act which can be accompanied
with a content, and a weak incompatibility in which only some acts can be associated
with contents.

Property 4. If Gs = ∅, or Bs = ∅, then the next move is (?, ?).

8 Illustrative Example

To illustrate the formal model, we will present an example of auction protocols, the
Dutch auction, which is used in the implementation of the fish market interaction
protocol [4].

The idea here is that seller S wants to sell an item using an auction. A number
of potential buyers B1, . . . , Bn, called also bidders, participate in rounds of auctions.
There is at least one round for each item during, which the auctioneer counts down the
price for the item and buyers simply send a signal to say if they want to bid at the current
price or not.

In the context of fish market, the protocol is indeed, organized in terms of rounds.
At each round, the seller proposes a price for the item. If there is no bidder then the
price is lowered by a set amount until a bid is received. However, if the item reaches
its reserve price the seller declares the item withdrawn and closes the round. If there is
more than one bid, the item is not sold to any buyer, and the seller restarts the round
at a higher price. Otherwise, if there is only one bid submitted at the current price, the
seller attributes the item to that buyer. In this protocol, the set of allowed moves is then:

S = {Offer, Accept, Pass, Attribute, Withdraw}

The first move allows the seller to propose prices, the second move allows buyers to
bid i.e to accept current price, the move Pass allows also the buyers to pass their turn
by saying nothing, the move Attribute allows the seller to attribute the item to the
selected buyer, and the last move Withdraw allows the seller to withdraw the item
from the auction. The following possible replies are also given by the protocol:

Replies(Offer) = {Accept, Pass}, Replies(Accept) = {Offer, Attribute},
Replies(Pass) = {Offer, Withdraw}, and
Replies(Attribute) = Replies(Withdrawn) = ∅.
The dialog starts always by a move Offer uttered by the seller.

The seller has a strategic goal which consists of minimizing the auction time. This goal
is stored in the strategic goal base of the agent.

GS
s = {(min time, 0.8)}

This agent has some strategic beliefs such as: if the time spent in the round is higher
than a certain bound time bound then it should stop the auction.

BS
s = {(time spent > time bound ∧ Withdraw → min time, 1), (time spent <

time bound ∧ Offer → min time, 1), (time spent < time bound ∧ Attribute →
min time, 1), (time spent > time bound ∧ Offer → ¬min time, 1)}
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The seller has a starting price and also a reserve price which represents the minimum
amount that it will accept for the item. The functional goal of this agent would be to
have a price at least equal to the reserve price, good price.

GS
f = {(good price, 1)}

The basic beliefs of the seller are given in its beliefs base:

BS
b = {(current price > reserve price ∧ Offer(current price) →

good price, 1), (current price > reserve price ∧ Attribute(current price) →
good price, 1), (current price < reserve price ∧ Offer(current price) →

¬good price, 1)}

Regarding the buyers, the aim of B1 is to get the item for the lowest possible price
cheap at most at bound price, and the aim of B2 is to get the item for the lowest
possible price max profit at most at bound price/2, that is the agent B2 bid for the
current price only when he could make at least 100% profit on the item. These last are
functional goals of the buyers since it concerns the subject of the negotiation. For the
sake of simplicity, these agents do not have strategic beliefs and goals.

GB1
f ={(cheap, 0.8), (buy, 0.7)} and GB2

f ={(max profit, 0.8), (buy, 0.7)}

The buyers are supposed to have the following beliefs.

BB1
b = {(current price < bound price ∧ Accept(current price) →

cheap, 1), (current price < bound price ∧ Accept(current price) →
buy, 1), (current price > bound price ∧ Accept(current price) →

¬buy, 1), (current price > bound price ∧ Accept(current price) →
¬cheap, 1), (current price > bound price ∧ Pass → ¬buy, 1)}

BB2
b = {(current price < bound price/2 ∧ Accept(current price) →

max profit, 1), (current price < bound price/2 ∧ Accept(current price) →
buy, 1), (current price > bound price/2 ∧ Accept(current price) →
¬buy, 1), (current price > bound price/2 ∧ Accept(current price) →
¬max profit, 1), (current price > bound price/2 ∧ Pass → ¬buy, 1)}

Let us now consider the following dialog between the seller S and the two buyers B1
and B2:

S : Offer(current price) . In this case, the only possible move to the agent is Offer.
Indeed, this is required by the protocol. An agent should select the content of that
move. Here again, the agent has a starting price so it will present it. At this stage,
the agent does not need its decision model in order to select the move.

B1andB2 : Accept(current price) . In this case, the current price is lower than
bound price/2 for the agents. The agents have an argument in favor of Accept.
In this case, they will choose Accept.

S : Offer(current price) . In this case, the item is not sold to any buyer since there
is more than one bid. The seller restarts the round at a higher price. Indeed, this is
required by the protocol. The only possible move to the agent is Offer. An agent



An Argumentation-Based Approach for Dialog Move Selection 139

should select the content of that move. Here again, the agent has a higher price so
it will present it as the current price. At this stage, the agent does not need its deci-
sion model in order to select the move. Let us suppose that the bound price/2 <
current price < bound price.

B1 : Accept(current price) . In this case, the current price current price is lower
than the price bound of the agent. In this case the agent has an argument in favor of
Accept because this will support its important goal cheap. In this case, the agent
will choose Accept.

B2 : Pass . In this case, the current price current price is higher than bound price/2,
and then the agent could not make 100% profit on the item. In this case the agent
has a counter argument against Accept because this will violate its important goal
max profit, and no arguments in favor of it. However, it has an argument in favor
of Pass since it will not violate the important goal. In this case, the agent will
choose Pass.

S : Attribute(current price) . The only possible move of the agent is Attribute.
Indeed this is required by the protocol since there is only one bid submitted at the
current price. Moreover, the current price is higher than the reserve price. In this
case the seller has an argument in favor of the content current price since this will
support its important goal good price. The seller decides then to attribute the item
to the bidder B1 and closes the round.

9 Conclusion

A considerable amount of work has been devoted to the study of dialogs between au-
tonomous agents and to development of formal models of dialog. In most works, the de-
finition of a protocol poses no problems and several dialog protocols have been defined
even for particular applications. However, the situation is different for dialog strategies.
There are very few attemps for modeling strategies. Indeed, there is no methodology
and no formal models for defining them. There is even no consensus on the different
parameters involved when defining a strategy. This paper claims that during a dialog,
a strategy is used only for defining the next move to play at each step of the dialog.
This amounts to define the speech act to utter and its content if necessary. The strategy
is then regarded as a two steps decision process: among all the replies allowed by the
protocol, an agent should select the best speech act to play, then it should select the best
content for that speech act.

The idea behind a decision problem is to define an ordering on a set of choices on
the basis of the beliefs and the goals of the agent. We have argued in this paper that se-
lecting a speech act and selecting a content of a speech act involve two different kinds
of goals and two different kinds of beliefs. Indeed, an agent may have strategic goals
which represent the meta-level goals of the agents about the whole dialog. An agent
may have also functional goals which are directly related to the subject of the dialog.
Similarly, an agent may have strategic beliefs which are meta-level beliefs about the di-
alog, the other agents, etc. It may also have some basic beliefs about the subject of the
dialog. We have shown that the choice of the next speech is based on the strategic beliefs
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and the strategic goals, whereas the choice of the content is based on the basic beliefs
and the functional goals.

We have then proposed a formal framework for defining strategies. This framework
can be regarded as two separate systems: one of them take as input the possible replies
allowed by a protocol, a set of strategic beliefs and a set of strategic goals and returns
the best speech act, and the second system takes as input a set of alternatives, a set of
basic beliefs and a set of functional goals and returns the best content of a speech act.
The two systems are grounded on argumentation theory. The basic idea behind each
system is to construct the arguments in favour and against each choice, to compute the
strength of each argument and finally to compare pairs of choices on the basis of the
quality of their supporting arguments. We have shown also the agents profiles play a
key role in defining principles for comparing decisions. In this paper we have presented
two examples: pessimistic agents which represent very cautious agents and optimistic
agents which are adventurous ones.

An extension of this work would be to study more deeply the links between the
strategic and the functional goals of an agent. In this paper, we suppose implicitly that
there are coherent. However, in reality it may be the case that an agent has a strategic
goal which is incompatible with a functional one. Let us take the example of an agent
negotiating the price of a car. This agent may have as a strategic goal to sell at the end
of the dialog. It may have also the goal of selling his car with highest price. These two
goals are not compatible since if the agent wants really to sell at the end its car, it should
reduce the price.
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Abstract. In this paper, we propose a new strategic and tactic rea-
soning for agent communication. This reasoning framework is specified
using argumentation theory combined to a relevance theory. Strategic
reasoning enables agents to decide about the global communication plan
in terms of the macro-actions to perform in order to achieve the main
conversational goal. Tactic reasoning, on the other hand, allows agents to
locally select, at each moment, the most appropriate argument accord-
ing to the adopted strategy. Previous efforts at defining and formalizing
strategies for argumentative agents have often neglected the tactic level
and the relation between strategic and tactic levels. In this paper, we
propose a formal framework for strategic and tactic reasoning for ra-
tional communicating agents and the relation between these two kinds
of reasoning. Furthermore, we address the computational complexity of
this framework and we argue that this complexity is in the same level
of the polynomial hierarchy than the complexity of the strategic-free
argumentation reasoning.

1 Introduction

Recent years have seen an increasing interest in agent communication. Using
argumentation theories in this domain seems a promising way to develop more
flexible and efficient agent communication mechanisms [1,3,4,14,16,28]. The idea
is to provide agents with reasoning capabilities allowing them to decide about
the appropriate communicative acts to perform in order to achieve some conver-
sational goals in different dialogue types [18,19,22,23,26].

In order to improve the agent communication efficiency, we propose in this
paper a formal framework addressing strategic and tactic issues. A strategy is
defined as a global cognitive representation of the means of reaching some goals
[33]. Tactic is basically the mean to reach the aims fixed at the strategic level
[20]. For example, according to Moore [20], maintaining focus of the dispute in
a persuasive dialogue, and building a point of view or destroying the opponent’s
one refer to strategy, whereas selecting methods to fulfill these two objectives
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refers to tactic. In our framework, the agents’ strategic and tactic reasoning
is based upon their argumentative capabilities. Agents use this reasoning in
order to achieve their conversational goals. Strategic reasoning allows agents
to plan the global line of communication in terms of the sub-goals to achieve,
whereas tactic reasoning allows them to locally select, at each moment, the
most appropriate argument according to the adopted strategy. In other words,
strategy is considered at the global level (in which direction the communication
can advance) and the tactics are considered at the local level (which move to be
selected next).

In recent years, some significant proposals have explored the strategic rea-
soning of argumentative agents [2,15,27,29]. However, the tactical reasoning has
often been neglected or simplified to a private preference policy like in [15]. In
addition, as outlined in [10], the problem of coming up with an optimal communi-
cation strategy that ensures beneficial interaction outcomes for the participating
agents is still an open problem. We think that an efficient agent communication
requires to address both the strategic and tactic levels and the relation be-
tween these two levels. The objective of this paper is to investigate this issue
for argumentative-based agent communication. Our contribution starts by for-
malizing strategic and tactic reasoning and the relation between them using a
management theory. At the tactical level, we develop a theory allowing agents
to select the most relevant argument at each moment according to the adopted
strategy. In addition, our approach enables agents to take into account the con-
versation context and to be able to backtrack if some choices are not appropriate.

Paper overview. In Section 2, we introduce the fundamental ideas of our
agent communication approach based on social commitments and arguments. In
Section 3, we present the strategic level of our framework and its relation with
the tactic level. In Section 4, we present the tactic reasoning. In Section 5, we
illustrates our ideas by an example. In Section 6, we discuss the computational
complexity of our framework. In Section 7, we compare our framework to related
work and conclude the paper.

2 Agent Communication Approach

Our agent communication approach is based on the philosophical notion of so-
cial commitments (SCs) [32]. A SC is an engagement made by an agent (called
the debtor), that some fact is true or that some action will be performed. This
commitment is directed to a set of agents (called creditors). A SC is an oblig-
ation in the sense that the debtor must respect and behave in accordance with
this commitment. Commitments are social in the sense that they are expressed
publicly and governed by some rules. This means that they are observable by
all the participants. The main idea is that a speaker is committed to a state-
ment when he made this statement or when he agreed upon this statement
made by another participant and acts accordingly. For simplification reasons,
we suppose that we have only one creditor. Thus, we denote a SC as follows:
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SC(Ag1, Ag2, t, ϕ) where Ag1 is the debtor, Ag2 is the creditor, t is the time
associated with the commitment, and ϕ its content. Logically speaking, a SC
is a public propositional attitude. The content of a SC can be a proposition or
an action. A detailed taxonomy of the SCs is presented in [5] and their logical
semantics is developed in [6].

In order to model the dynamics of conversations in our framework, we inter-
pret a speech act as an action performed on a SC or on a SC content. A speech
act is an abstract act that an agent, the speaker, performs when producing an
utterance U and addressing it to another agent, the addressee [31]. According to
speech act theory [31], the primary units of meaning in the use of language are
not isolated propositions but rather speech acts of the type called illocutionary
acts. Assertions, questions, orders and declarations are examples of these illocu-
tionary acts. In our framework, a speech act can be defined using BNF notation
as follows.

Definition 1 (Speech Acts). SA(ik, Ag1, Ag2, tu, U) =def

Act(Ag1, tu, SC(Ag1, Ag2, t, ϕ))
|Act−cont(Ag1, tu, SC(Agi, Agj, t, ϕ))
|Act(Ag1, tu, SC(Ag1, Ag2, t, ϕ)) &
Act−cont(Ag1, tu, SC(Agi, Agj , t, ϕ))

where SA is the abbreviation of ”Speech Act”, ik is the identifier of the speech
act, Ag1 is the speaker, Ag2 is the addressee, tu is the utterance time, U is
the utterance, Act indicates the action performed by the speaker on the commit-
ment: Act ∈ {Create, Withdraw, V iolate, Satisfy}, Act−cont indicates the ac-
tion performed by the speaker on the commitment content: Act−cont ∈ {Accept−
cont, Refuse−cont, Challenge−cont, Justify−cont, Defend−cont, Attack−cont},
i, j ∈ {1, 2}, i �= j, the meta-symbol ”&” indicates the logical conjunction between
actions performed on social commitments and social commitment contents.

The definiendum SA(ik, Ag1, Ag2, tu, U) is defined by the definiens
Act(Ag1, tu, SC(Ag1, Ag2, t, ϕ)) as an action performed by the speaker on its SC.
The definiendum is defined by the definiens Act−cont(Ag1, tu, SC(Agi, Agj , t, ϕ))
as an action performed by the speaker on the content of its SC (i = 1, j = 2)
or on the content of the addressee’s SC (i = 2, j = 1). Finally, the definiendum
is defined as an action performed by the speaker on its SC and as an action
performed by the speaker on the content of its SC or on the content of the
addressee’s SC. These actions are similar to the moves proposed in [30].

We notice here that using a social (public) approach as a theoretical founda-
tion does not mean that agents do not reason on their private mental states or on
the addressees’ mental states (beliefs, intention, etc.). According to Definition 1,
this public approach is used at the semantical level in order to interpret commu-
nicative acts as social commitments and not as mental states (see [6,7] for more
details about the public semantics). Public and mental (private) approaches are
not contradictory, but rather, they are complementary. In our framework, agents
reason on SCs and on their beliefs about the addressees’ beliefs and preferences
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(see Section 4.2). These beliefs are not public, but they can, for example, be
inferred from past interactions.

Our approach is also based on argumentation. Several argumentation theories
and frameworks have been proposed in the literature (see for example [9,17,25]).
An argumentation system essentially includes a logical language £, a definition of
the argument concept, a definition of the attack relation between arguments, and
finally a definition of acceptability. We use the following definitions from [1]. Here
Γ indicates a possibly inconsistent knowledge base with no deductive closure,
and � stands for classical inference.
Definition 2 (Argument). An argument is a pair (H, h) where h is a formula
of £ and H a subset of Γ such that: i) H is consistent, ii) H � h and iii) H is
minimal, so that no subset of H satisfying both i and ii exists. H is called the
support of the argument and h its conclusion.

Definition 3 (Attack). Let (H, h), (H ′, h′) be two arguments. (H ′, h′) attacks
(H, h) iff H ′ � ¬h. In other words, an argument is attacked if and only if there
exists an argument for the negation of its conclusion.

The link between commitments and arguments enables us to capture both the
public and reasoning aspects of agent communication. This link is explained
as follows. Before committing to some fact h being true (i.e. before creating a
commitment whose content is h), the speaker agent must use its argumenta-
tion system to build an argument (H, h). On the other side, the addressee agent
must use its own argumentation system to select the answer it will give (i.e. to
decide about the appropriate manipulation of the content of an existing commit-
ment). For example, an agent Ag1 accepts the commitment content h proposed
by another agent Ag2 if it is able to build an argument supporting this content
from its knowledge base. If Ag1 has an argument (H ′, ¬h), then it refuses the
commitment content proposed by Ag2. However, how agents can select the most
appropriate argument at a given moment depends on its tactic. This aspect is
detailed in Section 4. The social relationship that exists between agents, their
reputations and trusts also influence the acceptance of the arguments by agents.
However, this aspect will not be dealt with in this paper. The argumentation re-
lations that we use in our model are thought of as actions applied to commitment
contents. The set of these relations is: {Justify, Defend, Attack}.

In order to implement this communication model, we use an agent architecture
composed of three layers: the mental layer, the social layer, and the reasoning
layer. The mental layer includes beliefs, desires, goals, etc. The social layer cap-
tures social concepts such as SCs, conventions, roles, etc. Agents must use their
reasoning capabilities to reason about their mental states before acting on SCs.
The agent’s reasoning capabilities are represented by the reasoning layer using
an argumentation system. Our conversational agent architecture also involves
general knowledge, such as knowledge about the conversation subject. Agents
can also reason about their preferences in relation to beliefs. The idea is to cap-
ture the fact that some facts are more strongly believed. For this reason, we
assume, like in [1], that any set of facts has a preference order over it. We sup-
pose that this ordering derives from the fact that the agent’s knowledge base
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denoted by Γ is stratified into non-overlapping sets Γ1, . . . , Γn such that facts in
Γi are all equally preferred and are more preferred than those in Γj where i < j.
We can also define the preference level of a subset of Γ whose elements belong
to different non-overlapping sets as follows.

Definition 4 (Preference Level). The preference level of a nonempty subset
γ of Γ denoted by level(γ) is the number of the highest numbered layer which
has a member in γ.

Example 1. Let Γ = Γ1 ∪ Γ2 with Γ1 = {a, b} and Γ2 = {c, d} and γ = {a} and
γ′ = {a, d}. We have: level(γ) = 1 and level(γ′) = 2.

3 Strategic Reasoning

According to the theory of constraints proposed by Goldratt [13], the common
view about strategy is that of setting the high objectives of an initiative. The
strategy dictates the direction of all activities. Tactics, on the other hand, are the
chosen types of activities needed to achieve the objectives. Indeed, tactics allow
us to implement and accomplish the strategy. In management, a strategic plan
defines the mission, vision and value statements of an enterprize. Once objectives
are defined, alternative strategies can be evaluated. While a goal or an objective
indicates ”what” is to be achieved, a strategy indicates ”how” that achievement
will be realized. Strategies, therefore, depend on goals and objectives. Tactics
are the steps involved in the execution of the strategy.

Our strategic and tactic framework for agent communication is based on this
vision. In this framework, the dialogue strategy is defined in terms of the sub-
goals to be achieved in order to achieve the final conversational goal. The sub-
goals represents the macro-actions to be performed. This reflects the global vision
and the direction of the dialogue. The strategy has a dynamic nature in the
sense that the sub-goals can be elaborated while the dialogue advance. The
strategy can also be adjusted when more information becomes available. The
tactics represent the micro-actions to be performed in order to achieve each
elaborate (elementary) sub-goal. This reflects the local vision of the dialogue. A
tactic is succeeded when the sub-goal is achieved, and the strategy is succeeded
when all the involved tactics are succeeded, which means that the final goal is
achieved. Fig. 1 illustrates the strategic and tactic levels in our framework.

Indeed, in multi-agent systems, agents are designed to accomplish particular
tasks. Each agent has its own domain and a certain goals to achieve. We call this
kind of goals: operational goals. These agents often have to interact with each
other in order to achieve some sub-goals of the operational goals. These sub-goals
generate what we call conversational goals. In our framework, we distinguish be-
tween these two types of goals. In the same way, we distinguish between domain
constraints, called operational constraints, and conversational constraints called
criterions. Time and budget constraints are examples of operational constraints,
and respecting the religious and ideological believes of the addressee is an exam-
ple of criterions. In our framework, a dialogue strategy depends on the conversa-
tional goal, operational constraints and criterions. Operational constraints and
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Fig. 1. Strategy and tactics in our framework

criterions also reflect the factors that may influence the strategy design: goals,
domain, agents’ capabilities, agents’ values, protocol, counterparts, agents’ re-
sources, and alternatives [27]. Domain, agents’ capabilities, and agents’ values
are operational constraints. Protocol, counterparts, agents’ resources, and alter-
natives are criterions.

The initiative agent must build a global and initial strategy before starting the
conversation. A strategy allows an agent to decide about the main sub-goals to be
fixed in order to achieve the conversational goal according to a set of operational
constraints and conversational criterions. To achieve the same conversational
goal, an agent can have several alternative strategies depending on the sub-set
of operational constraints and the sub-set of criterions the agent decide to satisfy.
The conversational goal, sub-goals, operational constraints and criterions can be
expressed in a logical language. The set of operational constraints and the set
of criterions can be inconsistent. However, the sub-set of operational constraints
and the sub-set of criterions the agent decide to satisfy should be consistent.
We define a strategy as a function that associates to a goal and a sub-set of
operational constraints and a sub-set of criterions a set of goals (sub-goals).

Definition 5 (Strategy). Let B be a set of goals, Ctr be a set of operational
constraints, and Cr be a set of conversational criterions. A strategy is a function:
Str : B × 2Ctr × 2Cr → 2B

Strategies are dynamic in nature. Agents should adjust the adopted dialogue
strategy while the conversation progresses. This can be achieved by taking into
account the new constraints and criterions that can appear during the conver-
sation. In this case, the new constraints and criterions to be satisfied should
be consistent with the initial sub-set of constraints and criterions selected to
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be satisfied. Thus, agents can apply the strategy function (Str) each time new
constraints and criterions are added. This enables agents to decide about the sub-
goals to be achieved of each already fixed sub-goal. In Fig. 1, this is illustrated
by the different levels: from a level i to a level i+1 (we suppose that the level in
which we have the main or final goal is the lower one). We notice here that the
set of criterions can progress with the dialogue, whereas the set of operational
constraints is generally more stable.

Example 2. Let us suppose that: Ctr = {x0, x1, x2} and Cr = {y0, y1}. Let
B ∈ B be the conversational goal, and SCtr and SCr be two sub-sets of Ctr
and Cr representing the constraints and criterions selected to be satisfied. We
suppose that: SCtr = {x0, x1} and SCr = {y1}. We can have at a first time
(level 0): Str(B, SCtr, SCr) = {B1, B2, B3}. At a second time (level 1), we
suppose that: SCr = SCr ∪{y2}. Thus, by applying the Str function on B1, we
can obtain: Str(B1, SCtr, SCr) = {B11, B12, B13}.

This example illustrates how the strategy can influence the dialogue by deciding
about the sub-goals to achieve in order to achieve the main conversational goal.
The dialogue advance, on the other hand, influences the strategy by taking into
account the new operational constraints and criterions. In the case where the
new constraints and criterions are inconsistent with the initial selected ones, the
adopted strategy should be completely or partially changed. The strategy should
be completely changed if the main goal is changed. However, if only one of the
sub-goals is changed, the strategy should be partially changed.

In our framework, agents start by using the strategic reasoning to build the
general line of communication. This is reflected by applying the function Str on
the main conversational goal. Thereafter, strategic reasoning and tactic reasoning
are used in parallel. The link between strategy and tactics is that each tactic
is related to a sub-goal fixed by the strategy. The execution of a tactic allows
the execution, the evolution, and the adaptation of the strategy. For example, if
the tactic does not allow the achievement of a sub-goal, the strategy should be
adapted to fix another sub-goal.

4 Tactic Reasoning

In this section, we present our theory of the tactical reasoning for argumentation-
based communicative agents. As illustrated in Fig. 1, tactics allow agents to
select from a set of actions, one action in order to achieve a sub-goal fixed
by the adopted strategy. The purpose of our theory is to guarantee that the
selected action is the most appropriate one according to the current context. In
the rest of this paper, the actions we consider are arguments that agents use to
support their points of view or attack the opponent’s point of view. The most
appropriate action is then the most relevant argument. This enables agents to
be more efficient in their argumentation. Our theory is based on the relevance
of arguments.
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4.1 Relevance of Arguments

The most significant attempts to formalize relevance have been done by van Rooy
[34] and Fleger [12]. van Rooy supposes that the relevance of a communication
act in purely competitive dialogues depends on its argumentative force in a given
context. The argumentative force of a proposition with respect to a hypothesis
is defined by a probability function, which assigns a value to a proposition. This
value represents the probability that this proposition is true. However, van Rooy
does not specify how we can assign probabilities to different propositions. Fleger’s
proposal is based on the proof theory of minimality. It considers that an argument
is irrelevant if it is not in relation to the conversation subject (or problem to
be solved) or if it contains useless premises. This notion of relevance takes into
account only the agent’s knowledge base without considering the conversation
context. In addition, the minimality concept is not related to the notion of
relevance, but it is a part of arguments definition.

In our framework, we define the relevance of an argument according to the
conversation context. Our objective is to allow agents to select the most rel-
evant argument at a given moment by taking into account not only the last
communicative act, but also the previous acts. The idea is to provide a solu-
tion allowing backtracking. This means that, an agent selects one among a set
of possible arguments represented as a tree. If the choice proves to be incorrect
because the selected argument is not accepted by the addressee agent and can-
not be defended, the agent can backtrack or restart at the last point of choice
and can try another argument, which is represented by trying another path in
the tree. The arguments are ordered according to their relevance. We call this
process arguments selection mechanism.

4.2 Arguments Selection Mechanism

Let L be a logical language. The conversation context for an agent Ag1 commit-
ted in a conversation with another agent Ag2 is defined as follows.

Definition 6 (Context). The conversation context for an agent Ag1 (the
speaker) committed in a conversation with an agent Ag2 (the addressee) is a
5-tuple CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉 where:

• S is a formula of L representing the conversation subject that corresponds
to the conversational goal,

• s is a formula of L representing the argument on which the speaker should
act,

• PAg1,Ag2 is the set of Ag1’s beliefs about Ag2’s beliefs Pbel
Ag1,Ag2

and about
Ag2’s preferences Ppref

Ag1,Ag2
. Thus PAg1,Ag2 = Pbel

Ag1,Ag2
∪ Ppref

Ag1,Ag2
,

• KD is the knowledge that the two agents share about the conversation.

KD can contain results or laws related to the domain that are already proved.
In addition, all information on which the two agents agree during the current
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conversation is added to KD. For example, the accepted arguments are added
to KD. We also assume that KD ∩ PAg1,Ag2 = ∅.

In the context CAg1,Ag2 , formula s should be relevant for subject S in the
sense that there is a logical relation between the two formulas. This relation
represents the link between tactic and strategy. The idea is that the current
action (at the tactic level) is related to a sub-goal, which is fixed by the strategy.
The current argument can attack or support the formula representing the sub-
goal. In order to define this logical relation between S and s, we introduce the
notion of argumentation tree and the notion of path that we define as follows.

Definition 7 (Argumentation Tree). Let A be the set of participating agents
and AR be the set of arguments used by the agents in the dialogue. An argumen-
tation tree T is a 2-tuple T = 〈N, →〉 where:

• N = {(Agi, (H, h))|Agi ∈ A, (H, h) ∈ AR} is the set of nodes. Each node is
described as a pair (Agi, (H, h)), which indicates that the argument (H, h) is
used by the agent Agi,

• →⊆ N × N is a relation between nodes. We write n0 → n1 instead of
(n0, n1) ∈→ where {n0, n1} ⊆ N . The relation → is defined as follows:
(Ag1, (H, h)) → (Ag2, (H ′, h′)) iff Ag1 �= Ag2 and (H ′, h′) attacks (H, h)
(see definition 3).

This notion of argumentation tree is close to the notion of argument tree intro-
duced in [8] and to the notion of abstract dispute tree used in [11]. The main
difference between our argumentation tree notion and these two notions is that
the first one is used to formalize the logical relation between the conversation
subject S and the current argument s and not to illustrate the dialectical proof
and the acceptance of arguments. In addition, our argumentation tree is used to
illustrate the backtracking process which is not dealt with in [8] and in [11].

We associate each (argumentative) conversation to an argumentation tree.
The root of such an argumentation tree is the initial node n0 = (Agi, (H, S))
where Agi is the initiating agent (Agi ∈ A) and (H, S) is the argument support-
ing the conversation subject (or the conversation goal).

Definition 8 (Path). Let T = 〈N, →〉 be an argumentation tree. A path in T
is a finite sequence of nodes n0, n1, . . . , nm such that ∀i 0 ≤ i < m : ni → ni+1.

Proposition 1. Let CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉 be a conversation context
and A = {Ag1, Ag2} be the set of participating agents. There is a logical relation
between S and s in the context CAg1,Ag2 iff there is a path in the argumentation
tree associated with the conversation between the root and the current node nm =
(Agi, (H ′, s)) where i ∈ {1, 2} and (H ′, s) is the argument supporting s.

The existence of a path in the tree between the root and the current argument
means that this argument defends or attacks directly or indirectly the conversa-
tion subject. Thus, independently on the path, there is a logical relation between
S and s.
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In our approach, we first distinguish between relevant and irrelevant argu-
ments in a given context. This distinction allows agents to eliminate at each
argumentation step irrelevant arguments before ordering the relevant arguments
in order to select the most relevant one.

Definition 9 (Irrelevant Argument). Let CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉
be a conversation context, A be the set of participating agents, T = 〈N, →〉 be
the argumentation tree associated to the conversation, and (Agi, (H, h)) be a node
in T where i ∈ {1, 2}. (H, h) is irrelevant in the context CAg1,Ag2 iff:

1. There is no path between the node (Agi, (H, h)) and the root of T or;
2. ∃x ∈ KD : H � ¬x.

The first clause states that the argument does not address the conversation sub-
ject. The second clause states that the argument contradicts the shared knowl-
edge. We notice here that KD is a knowledge base that changes during the
conversation. Thus, an argument built at a step ti can become irrelevant at a
later step tj if it contradicts the new information accepted by the agent. In these
two cases, the argument is irrelevant and the agent can not use it. Irrelevant ar-
guments must be removed from the set of arguments that the agent can use at
a given step of the conversation. This set, called the set of potential arguments,
is denoted by PA.

In Section 2, we emphasized the fact that agents can have private preferences
about different knowledge (see definition 4). Therefore, they can have private
preferences about arguments. This preference relation denoted by (H, h) �Agi

pref

(H ′, h′) means that agent Agi prefers the argument (H ′, h′) to the argument
(H, h). We define this relation as follows.

Definition 10 (Preference). Let (H, h) and (H ′, h′) be two arguments.
(H, h) �Agi

pref (H ′, h′) iff level(H ′) ≤ level(H).

Because ≤ is an ordering relation, the preference relation �Agi

pref is reflexive,
antisymmetric, and transitive. Agents may also have favorites among their ar-
guments. How an agent favors an argument over others depends on the dia-
logue type. For example, in a persuasive dialogue, an agent can favor arguments
having more chances to be accepted by the addressee. In order to character-
ize this notion, we introduce the notion of weight of an argument. The weight
of an argument (H, h) compared to another argument (H ′, h′) in the context
CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉 is denoted by W

PAg1,Ag2
(H,h)/(H′,h′) and is evaluated

according to the following algorithm:
According to this algorithm, the weight of an argument (H, h) compared to

another argument (H ′, h′) is incremented by 1 each time Ag1 believes that Ag2
prefers a knowledge in H to a knowledge in H ′. Indeed, each element of H
is compered once to each element of H ′according to the preference relation.
Consequently, the weight of an argument is finite because H and H ′ are finite
sets.
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Algorithm 1 (Evaluation of an Argument compared to Another One)

Step 1: W
PAg1,Ag2
(H,h)/(H′,h′) = 0.

Step 2: (∀x ∈ H), (∀x′ ∈ H ′) :

(pref(x, x′) ∈ Ppref
Ag1,Ag2

) ⇒ W
PAg1,Ag2
(H,h)/(H′,h′) = W

PAg1,Ag2
(H,h)/(H′,h′)+1.

pref(x, x′) ∈ Ppref
Ag1,Ag2

means that Ag1 believes that Ag2 prefers x to x’.

The favorite relation is denoted by �PAg1,Ag2
fav and the strict favorite relation

is denoted by ≺PAg1,Ag2
fav . (H, h) �PAg1,Ag2

fav (H ′, h′) means that agent Ag1 favors
the argument (H ′, h′) over the argument (H, h) according to PAg1,Ag2 . This
relation is defined as follows.

Definition 11 (Favorite Argument). Let CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉 be
a conversation context and (H, h) and (H ′, h′) be two arguments in the context
CAg1,Ag2 . We have :

(H, h) �PAg1,Ag2
fav (H ′, h′) iff W

PAg1,Ag2
(H,h)/(H′,h′) ≤ W

PAg1,Ag2
(H′,h′)/(H,h),

(H, h) ≺PAg1,Ag2
fav (H ′, h′) iff W

PAg1,Ag2
(H,h)/(H′,h′) < W

PAg1,Ag2
(H′,h′)/(H,h).

In order to allow agents to select the most relevant argument in a conversation
context, we introduce an ordering relation between relevant arguments. This
ordering relation depends on the adopted strategy and is based on the notion
of the risk of failure of an argument. This notion of risk is subjective and there
are several heuristics to evaluate the risk of an argument. In this paper we use
a heuristic based on the fact that KD contains certain knowledge and PAg1,Ag2

contains uncertain beliefs. We formally define this notion as follows.

Definition 12 (Risk of Failure of an Argument). Let CAg1,Ag2 =
〈S, s, PAg1,Ag2 , KD〉 be a conversation context and (H, h) be a relevant argument
in the context CAg1,Ag2 . The risk of failure of (H, h) denoted by risk((H, h)) is
the sum of the risks of failure of all the formulas included in H. The risk of
failure of a formula q denoted by risk(q) is defined as follows:

• if q ∈ KD then risk(q) = v1.
• if q ∈ PAg1,Ag2 then risk(q) = v2.
• otherwise risk(q) = v3.

Where v1 < v2 < v3 and v1, v2, v3 ∈ R.

Values v1, v2 and v3 should be instantiated according to the dialogue type and the
confidence level of the beliefs included in PAg1,Ag2 . For example, in a persuasive
dialogue and if we consider that KD contains certain knowledge, we may have
v1 = 0, v2 = 0.25, v3 = 0.5. If the confidence level of PAg1,Ag2 is weak, it is
possible to increase v2. However, if this confidence level is high, it is possible to
decrease v2. In a persuasive dialogue, the idea behind the risk of failure is to
promote arguments whose hypotheses have more chance to be accepted. Other
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approaches like those used in fuzzy systems to reason with uncertainty (using
for example probabilities) can also be used to evaluate the risk of an argument.
The advantage of our approach is that it is easy to implement and it reflects the
intuitive idea that adding uncertain hypotheses increases the risk of failure of
an argument.

The relevance ordering relation denoted by �r can be defined as follows.

Definition 13 (Relevance Ordering Relation). Let CAg1,Ag2 =
〈S, s, PAg1,Ag2 , KD〉 be a conversation context and (H, h) and (H ′, h′) be
two relevant arguments in the context CAg1,Ag2 . (H ′, h′) is more relevant than
(H, h) denoted by (H, h) �r (H ′, h′) iff:

• risk((H ′, h′)) < risk((H ′, h′)) or
• risk((H ′, h′)) = risk((H ′, h′)) and (H, h) ≺PAg1,Ag2

fav (H ′, h′) or

• risk((H ′, h′)) = risk((H ′, h′)) and (H, h) �PAg1,Ag2
fav (H ′, h′) and

(H ′, h′) �PAg1,Ag2
fav (H, h) and (H, h) �Ag1

pref (H ′, h′).

According to this definition, (H ′, h′) is more relevant than (H, h) if the risk
of (H, h) is greater that the risk of (H ′, h′). If the two arguments have the
same risk, the more relevant argument is the more favourable one according to
the favourite relation ≺PAg1,Ag2

fav . If the two arguments have the same risk and
they are equal according to the favourite relation, the more relevant argument
is the more preferable one according to the preference relation �Agi

pref where
i ∈ {1, 2}. The two arguments have the same relevance if in addition they are
equal according to the preference relation. The ordering relation �r is reflexive,
antisymmetric, and transitive. The proof is straightforward from the definition
and from the fact that �Agi

pref is an ordering relation (see Definition 10).
Computationally speaking, the arguments selection mechanism is based on:

(1) the elimination of irrelevant arguments; (2) the construction of new relevant
arguments; (3) the ordering of the relevant arguments using the relevance order-
ing relation; and (4) the selection of one of the most relevant arguments. This
process is executed by each participating agent at each argumentation step at
the tactical level. The relevant arguments that are not selected at a step ti, are
recorded and added to the set of potential arguments PA because they can be
used at a subsequent step. The set of potential arguments can be viewed as a
stack in which the higher level argument is the most relevant one. A relevant
argument constructed at a step ti and used latter at a step tj simulates the back-
tracking towards a previous node in the argumentation tree and the construction
of a new path. The following example illustrates this idea.

5 Example

In this example, we present only a part of the argumentation tree, which
is sufficient to illustrate the arguments selection mechanism. To simplify
the notation, arguments are denoted by ai and a′i (1 ≤ i ≤ n). We assume
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that the conversation subject is S, A = {Ag1, Ag2}, KD = {f, l, q}, and
PAg2,Ag1 = {p, d, r} ∪ {pref(q, p)} where f, l, q, p, d and r are formulas of
the language L. The part of the argumentation tree we are interested in starts
from a node ni = (Ag1, a1) where a1 = ({s, ¬s′, s ∧ ¬s′ → u}, u) and s, s′, u
are formulas of the language L. We also assume that from its knowledge base,
agent Ag2 produces four arguments taking into account the current context
CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉. These arguments are:

a′1 = ({p, k, p ∧ k → ¬s}, ¬s), a′2 = ({q, r, c, q ∧ r ∧ c → ¬s}, ¬s),
a′3 = ({¬d, m, ¬d ∧ m → s′}, s′), and a′4 = ({e, c, e ∧ c → s′}, s′).

Where p, k, q, r, c, d, m and e are formulas of the language L. Hence: PA(Ag2) =
{a′1, a′2, a′3, a′4} (PA(Ag2) is the set of Ag2’s potential arguments).

At this step (step 1), Ag2 should select the most relevant argument using
our relevance ordering relation. In order to do that, Ag2 should evaluate the
risk of failure of these arguments. We assume that v1 = 0, v2 = 0.3, v3 = 0.5.
Consequently: risk(a′1) = 0.3 + 0.5 = 0.8, risk(a′2) = 0 + 0.3 + 0.5 = 0.8,
risk(a′3) = 0.7 + 0.5 = 1.2, risk(a′4) = 0.5 + 0.5 = 1.

The arguments a′1 and a′2 have the same risk of failure. However, because
pref(q, p) ∈ PAg2,Ag1 and according to our evaluation algorithm (algorithm 4.2),
we obtain: W

PAg2,Ag1
a′
1/a′

2
= 0 and W

PAg2,Ag1
a′
2/a′

1
= 1.

Therefore, according to definitions 11 and 13, the four arguments are or-
dered as follows: a′3 �r a′4 �r a′1 �r a′2. Consequently, Ag2 selects a′2. Then
(step 2), Ag1 should take position on a′2. For that we assume that Ag1 has
only one argument a2 = ({f, l, f ∧ l → ¬c}, ¬c) attacking a′2 in the new context
CAg1,Ag2 = 〈S, ¬s, PAg1,Ag2 , KD〉. Because f, l ∈ KD, Ag2 accepts this argu-
ment. Thereafter, ¬c is added to KD and according to definition 9, a′4 becomes
irrelevant. This argument is removed from the set of Ag2’s potential arguments.
We then obtain PA(Ag2) = {a′1, a

′
3}. According to the arguments selection mech-

anism, Ag2 selects a′1 (step 3). Selecting this argument at this step simulates a
backtracking towards a lower level node (previous node) in the argumentation
tree. This example is illustrated in Fig. 2.

6 Complexity Analysis

Having defined an argument selection mechanism, we consider its computational
complexity. After briefly recalling some complexity results proved by Parsons and
his colleagues [24], which are useful for our framework, we present the complexity
results of this mechanism. In addition, We use the polynomial time hierarchy
notation as defined in [21]:

Δp
0 =

∑p
0 =

∏p
0 = p

and ∀k ≥ 0, Δp
k+1 = P

�p
k ,

∑p
k+1 = NP

�p
k ,

∏p
k+1 = co-

∑p
k+1
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Fig. 2. A part of argumentation tree with the arguments selection mechanism

In particular, NP =
∑p

1, co-NP =
∏p

1, NPNP =
∑p

2, co-NPNP =
∏p

2, and
Δp

2 = PNP. According to the results presented in [24], determining if there is
an argument for a conclusion h over a knowledge base Σ is

∑p
2-complete. In

addition, determining if a given argument is minimal is
∏p

2-complete.
To determine the complexity of our argument selection mechanism, we have

to determine the complexity of the elimination of irrelevant arguments for a
given context and the complexity of the relevance ordering relation. This latter is
based on three points: (1) the ordering of relevant arguments using the preference
relation; (2) the ordering of relevant arguments using the favorite relation; and
(3) the risk of failure of an argument. The computational complexity of our
strategic and tactic-based reasoning is as follows:

• Elimination of irrelevant arguments. According to Definition 9, an ar-
gument (H, h) is irrelevant in the context CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉
iff there is no path between the node (Agi, (H, h))(i ∈ {1, 2}) of the argu-
mentation tree T and the root of T or; ∃x ∈ KD : H � ¬x. To determine
the complexity of this operation, we need the following lemmas:

Lemma 1. Given two arguments (H, h) and (H ′, h′), determining if (H ′, h′)
attacks (H, h) is co-NP-complete.

Proof. According to Definition 3, an argument (H ′, h′) attacks (H, h) iff
H ′ � ¬h. The problem is consequently to decide if H ′ → ¬h is a tautology,
which is co-NP-complete. �

Lemma 2. Given a conversation context CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉,
and an argument (H ′, h′), determining if there is a path between the node
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(Agi, (H ′, h′))(i ∈ {1, 2}) of the argumentation tree T and the root of T is
in P ||NP (P with parallel queries to NP).

Proof. The argumentation tree is built while the conversation proceeds. The
root is the first argument supporting the conversation subject S. According
to Definition 7, to be added in the tree, each new argument should attacks
an existing one. Consequently, determining if there is a path between the
node (Agi, (H ′, h′))(i ∈ {1, 2}) of the argumentation tree T and the root of
T becomes a problem of deciding if there is an argument in the tree attacked
by the new argument (H ′, h′). To solve this problem, we use the following
algorithm:

For each argument (H, h) (in the tree) proposed by the interlocutor, decide
whether (H ′, h′) attacks (H, h) or not.

Because the size of the argumentation tree in terms of the number of nodes
is polynomially bounded, and because all these verifications can be done in
parallel, by Lemma 1, the complexity of this algorithm is in P||NP. �

Lemma 3. Given a conversation context CAg1,Ag2 = 〈S, s, PAg1,Ag2 , KD〉,
an argument (H, h), and a formula x, determining if x ∈ KD ∧ H � ¬x is
co-NP-complete.

Proof. Because the size of KD is polynomially bounded, deciding if x ∈ KD
is in P. Since H � ¬x is co-NP-complete, the co-NP-completeness of the
problem follows. �

Theorem 1. Given a conversation context CAg1,Ag2 =
〈S, s, PAg1,Ag2 , KD〉, determining whether an argument is irrelevant
for CAg1,Ag2 is in P ||NP .

Proof. By Definition 9, to prove that an argument is irrelevant, we have to
prove two parts. By Lemma 2, the first part (the existence of the path) is
in P||NP. It remains to show that the second part is in P||NP. For that, we
use the following algorithm: For each formula x ∈ KD check if H � ¬x until
all formulas are checked or one formula satisfying H � ¬x is found. Because
these verifications can be done in parallel, By Lemma 3, this algorithm is in
P||NP. �

• Ordering of relevant arguments using the preference relation
For the preference relation we suppose that the knowledge base of the agent
is stratified. By Definition 10, an argument (H ′, h′) is more preferable than
an argument (H, h) iff level(H ′) ≤ level(H). Therefore, this problem can
be solved in a polynomial time.

• Ordering of relevant arguments using the favorite relation
By Definition 11, an argument (H ′, h′) is more favourable than an argument
(H, h) if the weight of (H ′, h′) is greater than that of (H, h). The evaluation
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of the weight of an argument (H, h) compared to an argument (H ′, h′) is
in O(|H | × |H |′). Therefore, the complexity of deciding if an argument is
favorite than an other one is polynomial.

• Risk of failure of an argument
By Definition 12, the complexity of determining the risk of an argument is
polynomial.

Finally, we can conclude that the complexity of the strategic and tactic reason-
ing in the worse case is in Δp

2. Consequently, this mechanism is not an additional
source of complexity when reasoning with arguments which is in

∑p
2.

7 Related Work and Conclusion

Recently, some interesting proposals have addressed the strategic reasoning of
argumentative agents. In [27], Rahwan et al. propose a set of factors that may
influence the strategy design. These factors are considered in our framework as
operational constraints and criterions. In [2], Amgoud and Maudet define the
strategy as a function allowing agents to select a communicative act from the
permitted acts. This definition does not take into account the underlying fac-
tors and the operational selection mechanism. The more complete framework in
the literature addressing tactic and strategic issues of agent communication was
developed by Kakas et al. [15]. The authors propose an argumentation-based
framework encompassing private tactics of the individual agents and strategies
that reflect different classes of agent attitudes. This framework uses sceptical
and credulous forms of argumentative reasoning. Private strategies specify the
dialogue moves an agent is willing to utter, according to its own objectives and
other personal characteristics. Unlike our proposal, this work does not specify
the relation between strategy and tactic. In addition, strategies and tactics are
mainly represented using a preference policy on the dialogue moves. However,
our strategy and tactic theory is based on the goals and sub-goals agents want
to achieve. The context notion we use in our framework that reflects the conver-
sational goal and the different agents’ beliefs is different from the one used by
the authors, which is generally defined on the basis of some priority rules.

The different proposals that have considered the strategic level, have neglected
the important relation between strategy and tactics. The contribution of this
paper is the proposition of an approach allowing agents to combine strategic and
tactic reasoning in order to be more efficient in their communications. The link
between strategic and tactic levels enables agents to have global and local visions
of the dialogue. In addition, our tactic theory provides a strong mechanism to
select the most appropriate argument depending on the strategy adopted by the
agent. The mechanism uses our relevance principle that takes into account the
conversation context. This selection mechanism is implemented in the case of
persuasion dialogues using logical programming and an agent-oriented platform
(Jack Intelligent Agents). In addition, an important advantage of our approach
is the fact that it allows backtracking.
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The approach presented in this paper is general and can be implemented for
other dialogue types. As future work, we plan to define in a systematic way the
relevance ordering for each dialogue type. In addition, we intend to enhance
protocols based on dialogue games with our strategic and tactic approach. This
will allows us to develop more flexible and efficient argument-based agent con-
versations. We also intend to analyze and evaluate the behavior of the proposed
heuristics (e.g. the notion of risk of failure). On the other hand, our framework
is operational in its design. Thus, if it is different from the one developed by
Sadri et al. [30], which is more declarative. Considering the declarative meaning
and investigating the formal properties of our argumentation setting is another
key issue for future work.
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C. (eds.) ArgMAS 2004. LNCS (LNAI), vol. 3366, pp. 1–18. Springer, Heidelberg
(2005)

24. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and Complexity of Some
Formal Inter-agent Dialogues. J. Log. Comput. 13(3), 347–376 (2003)

25. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation, 2nd edn. Hand-
book of Philosophical Logic (2000)

26. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg,
L.: Argumentation-based negotiation. The Knowledge Engineering Review 18(4),
343–375 (2003)

27. Rahwan, I., McBurney, P., Sonenberg, L.: Towards a theory of negotiation strategy
(a preliminary report). In: Proc. of the Workshop on Game Theoretic and Decision
Theoretic Agents (2003)

28. Reed, C., Walton, D.: Towards a Formal and Implemented Model of argumentation
schemes in Agent Communication. In: Rahwan, I., Moräıtis, P., Reed, C. (eds.)
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Abstract. While researchers have looked at many aspects of argumen-
tation, an area often neglected is that of argumentation strategies. That
is, given multiple possible arguments that an agent can put forth, which
should be selected in what circumstances. In this paper, we propose two
related heuristics that allow an agent to select what utterances to make.
The first involves minimising the amount of information revealed in the
course of a dialogue. The second heuristic assigns a utility cost to reveal-
ing information, as well as a utility to winning, drawing and losing an
argument. An agent participating in a dialogue then attempts to max-
imise its utility. We present a formal argumentation framework in which
these heuristics may operate, and show how they function within the
framework. Finally, we discuss extensions to the heuristics, and their
relevance to argumentation theory in general.

1 Introduction

Argumentation has emerged as a powerful reasoning mechanism in many do-
mains. One common dialogue goal is to persuade, where one or more participants
attempt to convince the others of their point of view. This type of dialogue can
be found in many areas including distributed planning and conflict resolution,
education and in models of legal argument.

At the same time that the breadth of applications of argumentation has ex-
panded, so has the sophistication of formal models designed to capture the
characteristics of the domain. In particular, Prakken [1] has focused on legal
argumentation, and has identified four layers with which such an argumentation
framework must concern itself. These are:

– The logical layer, which allows for the representation of basic concepts such
as facts about the world. Most commonly, this layer consists of some form
of non–monotonic logic.

– The dialectic layer, in which argument specific concepts such as the ability
of an argument to defeat another are represented.

– The procedural layer governs the way in which argument takes place. Com-
monly, a dialogue game [2] is used to allow agents to interact with each
other.

N. Maudet, S. Parsons, and I. Rahwan (Eds.): ArgMAS 2006, LNAI 4766, pp. 161–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



162 N. Oren, T.J. Norman, and A. Preece

– The heuristic layer contains the remaining parts of the system. Depending
on the underlying layers, these may include methods for deciding which
arguments to put forth and techniques for adjudicating arguments.

While many researchers have focused on the lowest two levels (excellent sur-
veys can be found in [3,1,4]), and investigation into various aspects of the pro-
cedural layer is ongoing (for example, [5,6]), many open questions remain at the
heuristic level.

In this paper, we propose two related heuristics that will allow an agent to
decide which argument it should advance. The first, following one of the Gricean
maxims, involves the agent selecting the utterance that will allow it to achieve its
goals while minimising the amount of information it reveals. The second assigns
a utility cost to the various literals revealed in the course of an argument. In this
form of the heuristic, an agent’s desire to prove its goal literals is tempered by
the cost of revealing information. These heuristics are useful in many negotiation
and persuasion domains where confidentiality is important or lack of trust exists.
Examples include negotiations where company trade secrets are on the line and
debates between governments. While winning an argument in such settings might
provide a short term benefit, the revelation of various facts within the argument
might damage the agent in the long-run.

In the next section, we examine a number of existing approaches to strategy
selection, after which we describe the theoretical underpinnings of our approach.
We then present the heuristics, and examine them by means of an example.
Finally, we discuss a number of possible avenues of future work.

2 Background and Related Research

Argumentation researchers have recognised the need for argument selection strate-
gies for a long time. However, the field has only recently started receiving more
attention. Moore, in his work with the DC dialectical system [7], suggested that
an agent’s argumentation strategy should take three things into account:

– Maintaining the focus of the dispute.
– Building its point of view or attacking the opponent’s one.
– Selecting an argument that fulfils the previous two objectives.

The first two items correspond to the military concept of a strategy, i.e. a
high level direction and goals for the argumentation process. The third item
corresponds to an agent’s tactics. Tactics allow an agent to select a concrete
action that fulfils its higher level goals. While Moore’s work focused on natural
language argument, these requirements formed the basis of most other research
into agent argumentation strategies.

In 2002, Amgoud and Maudet [8] proposed a computational system which
would capture some of the heuristics for argumentation suggested by Moore.
Their system requires very little from the argumentation framework. A prefer-
ence ordering is needed over all possible arguments, and a level of prudence is
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assigned to each agent. An argument is assigned a strength based on how con-
voluted a chain of arguments is required to defend it. An agent can then have a
“build” or “destroy” strategy. When using the build strategy, an agent asserts
arguments with a strength below its prudence level. If it cannot build, it switches
to a destroy strategy. In this mode, it attacks an opponent’s arguments when
it can. While the authors note other strategies are reasonable, they make no
mention of them. Shortcomings of their approach include its basis on classical
propositional logic and the assumption of unbounded rationality; computational
limits may affect the arguments agents decide to put forth. Finally, no attempt
is made to capture the intuition that a fact defended by multiple arguments is
more acceptable than one defended by fewer (the so called “accrual of evidence”
argument scheme [9]).

Using some ideas from Amgoud’s work, Kakas et al. [10] proposed a three layer
system for agent strategies in argumentation. The first layer contains “default”
rules, of the form utterance ← condition, while the two higher layers provide
preference orderings over the rules. Assuming certain restrictions on the rules,
they show that only one utterance will be selected using their system, a trait
they refer to as determinism. While their approach is able to represent strategies
proposed by a number of other techniques, it does require hand crafting of the
rules. No suggestions are made regarding what a “good” set of rules would be.

In [11], Amgoud and Prade examined negotiation dialogues in a possibilistic
logic setting. An agent has a set of goals it attempts to pursue, a knowledge base
representing its knowledge about the environment, and another knowledge base
which is used to keep track of what it believes the other agent’s goals are. The
authors then present a framework in which these agents interact which incorpo-
rates heuristics for suggesting the form and contents of an utterance, a dialogue
game allowing agents to undertake argumentation, and a decision procedure to
determine the status of the dialogue. Their heuristics are of particular interest as
they are somewhat similar to the work we investigate here. One of their heuris-
tics, referred to as the criterion of partial size, uses as much of an opponent’s
knowledge as possible, while the heuristic referred to as the criterion of total size
attempts to minimise the length of an argument. Apart from operating in a ne-
gotiation rather persuasion setting, their heuristics do not consider the amount
of information revealed from one’s own knowledge base.

Cayrol et al. [12] have investigated a heuristic which, in some respects, is sim-
ilar to one of ours. In their work, an agent has two types of arguments in its
knowledge base. The first, referred to as unrestricted arguments, is used as nec-
essary. The second type, consisting of so called restricted arguments, is only used
when necessary to defend unrestricted arguments. They provide an extension of
Dung’s argumentation framework which allows one to determine extensions in
which a minimal amount of restricted knowledge is exposed, thus providing a rea-
soning procedure representing minimum information exposure. However, Cayrol
et al. do not provide a dialogical setting in which the heuristic can operate.
Also, since their restricted arguments can only be used to defend unrestricted
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arguments, it is not clear how their heuristic will function in situations where
all knowledge is restricted.

In [13], Bench-Capon describes a dialogue game based on Toulmin’s work.
He identifies a number of stages in the dialogue in which an agent might be
faced with a choice, and provides some heuristics as to what argument should be
advanced in each of these cases. Only an informal justification for his heuristics
is provided.

Apart from guiding strategy, heuristics have seen other uses in dialogue games.
Recent work by Chesñevar et al. [14] has seen heuristics being used to minimise
the search space when analysing argument trees. Argument schemes [15] are well
used tools in argumentation research, and can be viewed as a form of heuristic
that guides the reasoning procedure.

3 The Framework and Heuristic

In many realms of argument, auxiliary considerations (apart from simply winning
or losing the argument) come into play. In many scenarios, one such consideration
involves hiding certain information from an opponent. In this section, we describe
two heuristics intended to guide an agent taking part in a dialogue while being
careful about what information it reveals.

We begin by introducing a concrete argumentation system which includes
explicit support for arguments with unknown status. Most other argumentation
frameworks support this concept only implicitly (Dung’s framework [16], for
example, can model these types of arguments by looking at what arguments
exist in some, but not all, preferred extensions). Our framework contains very
few features, as this allows us to describe the heuristic without additional clutter.
After this, we describe a dialogue game which can be used by the agents to
undertake an argument, after which our heuristics are introduced.

3.1 The Argumentation Framework

Argumentation takes place over the language Σ, which contains propositional
literals and their negation.

Definition 1. Argument An argument is a pair (P, c), where P ⊆ Σ ∪ {�}
and c ∈ Σ such that if x ∈ P then ¬x /∈ P . We define Args(Σ) to be the set of
all possible arguments derivable from our language.

P represents the premises of an argument (also referred to as an argument’s
support), while c stands for an argument’s conclusion. Informally, we can read
an argument as stating “if the conjunction of its premises holds, the conclusion
holds”. An argument of the form (�, a) represents a conclusion requiring no
premises (for reasons detailed below, such an argument is not necessarily a fact).

Arguments interact by supporting and attacking each other. Informally, when
an argument attacks another, it renders the latter’s conclusions invalid.

An argument cannot be introduced into a conversation unless it is grounded.
In other words, the argument ({a, b}, c) cannot be used unless a and b are either
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known or can be derived from arguments derivable from known literals. Care
must be taken when formally defining the concept of a grounded argument, and
before doing so, we must (informally) describe the proof theory used to determine
which literals and arguments are justified at any time.

To determine what arguments and literals hold at any one time, we begin by
examining grounded arguments and determining what can be derived from them
by following chains of argument. Whenever a conflict occurs (i.e. we are able to
derive literals of the form x and ¬x), we remove these literals from our derived
set. Care must then be taken to eliminate any arguments derived from conflicting
literals. To do this, we keep track of the conflicting literals in a separate set, and
whenever a new conflict arises, we begin the derivation process afresh, never
adding any arguments to the derived set if their conclusions are in the conflict
set.

More formally, an instance of the framework creates two sets J ⊆ Args(Σ) and
C ⊆ Σ where J and C represent justified arguments and conflicts respectively.

Definition 2. Derivation. An argument A = (Pa, ca) is derivable from a set
S given a conflict set C(written S, C � A) iff ca /∈ C and (∀p ∈ Pa(∃s ∈ S such
that s = (Ps, p) and p /∈ C) or Pa = {�}).

Clearly, we need to know what elements are in C. Given a knowledge base
of arguments κ ⊆ Args(Σ), this can be done with the following reasoning
procedure:

J0 = {A|A ∈ κ such that {}, {} � A}
C0 = {}

Then, for i > 0, j = 1 . . . i, we have:

Ci = Ci−1 ∪ {cA, ¬cA|∃A = (PA, cA), B = (PB , ¬cA) ∈ Ji−1

such that attacks(A, B)}

Xi0 = {A|A ∈ κ and {}, Ci � A}
Xij = {A|A ∈ κ and Xi(j−1), Ci � A}

Ji = Xii

The set X allows us to recompute all derivable arguments from scratch after
every increment of i1. Since i represents the length of a chain of arguments,
when i = j our set will be consistent to the depth of our reasoning, and we
may assign all of these arguments to J . Eventually, Ji = Ji−1 (and Ci = Ci−1)
which means there are no further arguments to find. We can thus define the
conclusions asserted by κ as K = {c|A = (P, c) ∈ Ji}, for the smallest i such
that Ji = Ji+1. We will use the shorthand K(κ) and C(κ) to represent those
literals which are respectively asserted by, or in conflict with the knowledge
base κ.
1 This allows us to get rid of long invalid chains of arguments, as well as detect and

eliminate arbitrary loops.
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As an example, given κ = {(�, s), (s, t), (t, ¬s)}, the algorithm would operate
as follows (note that not all steps are shown):

J0 = {(�, s)}, C1 = {},

J1 = X11 = {(�, s), (s, t)}
. . .

J2 = (�, s), (s, t), (t, ¬s), C3 = {s, ¬s}
X30 = {} . . . J4 = J3 = {}

3.2 The Dialogue Game

Agents make use of the argumentation framework described above in an attempt
to convince others of their point of view. To do so, they participate in a dia-
logue with each other. Informally, agents take turns to make utterances, that
is, advance a related set of arguments. When an utterance is made, it is placed
in a global knowledge base known as the commitment store CS. The dialogue
ends when the agents decline to make any utterances containing new informa-
tion. This dialogue game ignores issues that more complex games handle, such
as commitment retraction. Furthermore, the dialogue game does not ensure that
utterances are related to the topic of conversation. This is left to the heuristic.

Definition 3. Turns and utterances The function

turn : Environment × Agent → Environment

takes an agent and an environment of the form Environment = (Agents, CS)
where Agents is the set of agents participating in the dialogue, and CS is the
commitment store. It returns a new environment containing the result of the
utterance (utterance : Environment × Agent → 2Args(Σ)) made by Agent α
during its turn.

turn(Environment, α) = (Agents, {CS ∪ utterance(Environment, α)})

Given a set of agents Agent0, Agent1, . . . , Agentn, we set α = Agenti mod n.
The utterance function and the exact form of the agent are heuristic dependant,
and will be described later. We are now in a position to define the dialogue game
itself. Each turn in the dialogue game results in a new public commitment store,
which is used by agents in later turns.

Definition 4. Dialogue game The dialogue game is defined as
turn0 = turn((Agents, CS0), Agent0)
turni+1 = turn(turni, Agenti mod n)

The game ends when turni . . . turni−n+1 = turni−n.

CS0 is dependent on the system, and contains any arguments that are deemed to
be common knowledge (though these arguments may be attacked like any other
argument during later turns in the game). Also, note that the null utterance {}
is defined to be a pass.
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3.3 The Heuristics

By using the procedure described earlier, agents can

– Determine, by looking at CS, what literals are in force (i.e. in K(CS)) and
in conflict.

– Determine, by combining CS with parts of their own knowledge base, what
literals they can prove (or cause to conflict).

We are now in a position to describe two possible heuristics agents may use
to decide what utterances to make.

Minimising How Much Information Is Revealed. Given an agent of the
form (KB, g) where KB ⊆ Args(Σ) and g ∈ Σ. We call such an agent an
information minimising agent if it obeys the following heuristic: advance an
argument in an attempt to win such that the number of new literals revealed is
minimised. If it impossible to win, attempt to draw while still minimising the
number of literals revealed.

An agent wins an argument if g ∈ K(CS) at the end of the dialogue game,
while a draw results if no conclusions can be reached regarding the status of g,
i.e. g ∈ C(CS) or {g, ¬g} ∩ K(CS) = {}.

Thus, given a commitment store CS and a knowledge base KB, we have the
following definitions:

Definition 5. Winning and drawing arguments An agent (Name, g) has
a set of winning arguments defined as Win = {A ∈ 2KB|g ∈ K(A ∪ CS). The
set of drawing arguments for the agent is defined as Draw = {A ∈ 2KB| (g ∈
C(A ∪ CS) or {g, ¬g} ∩ K(A ∪ CS) = {})

Definition 6. Information exposure An agent (KB, g) making an utterance
A ∈ 2KB has an information exposure with regards to a commitment store CS
of

Inf = |K(A ∪ CS) + C(A ∪ CS)| − |K(CS) + C(CS)|
Where K(X) and C(X) are the sets of literals obtained by running the reasoning
process over the set of arguments X.

Definition 7. Possible arguments The set of possible arguments an agent
would utter is defined as

PA =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ∈ Win s.t. Inf (A) = min(Inf (B)), B ∈ Win. Win �= {}

A ∈ Draw s.t. Inf (A) = min(Inf (B)), B ∈ Draw Win = {},
Draw �= {}

{} Win = {},
Draw = {}

The utterance an agent makes is one of these possible arguments: utterance ∈
PA. utterance.
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It should be noted that a “pass”, i.e. {} might still be uttered as part of the
Win or Draw strategy. Also, if multiple utterances exist in PA, another heuristic
(such as picking the shortest utterance) may be used to choose between them.

Literals in K(CS) at the end of the game are those agreed to be in force by
all the agents.

Utility Based Argumentation. The previous heuristic assumes that all in-
formation is of equal value to an agent. Our second heuristic extends the first
by assigning different utility costs to different literals, as well as to the agent’s
goals. An agent may now rather draw (or lose) an argument than win it, as it
would provide it with higher utility.

In this form of the heuristic, an agent loses utility for any literal exposed in
the commitment store, regardless of whether it, or another agent revealed it.
This approach makes sense in domains where confidentiality of information is
important. We have described different forms of the heuristic [17] where utility
is paid only by the agent revealing information.

To utilise this heuristic, we define an agent α as the tuple

(KB, g.ρ, Uwin, Udraw, Ulose)

where KB and g are the agent’s private knowledge base and goals as in the
previous heuristic. Uwin, Udraw, Ulose ∈ � are the utilities gained by the agent for
winning, drawing, or losing the dialogue. ρ is a preference ranking that expresses
the “cost” to an agent of information being revealed, and maps a set of literals
L to a real number. The cost of being in a certain environmental state is the
result of applying the preference ranking function ρ to the literals present in that
state.

Definition 8. Preference Ranking A preference ranking ρ is a function ρ :
L → � where L ⊆ 2Σ.

We are able to use the above, together with definition 5, to define the following:

Definition 9. Argument utility Given an agent with a preference ranking ρ,
we define an agent’s net utility U for advancing an argument A as

U(A) =

⎧
⎨

⎩

Uwin − ρ(L) if A ∈ Win
Udraw − ρ(L) if A ∈ Draw
Ulose − ρ(L) otherwise

such that L = K(CS ∪ A) ∪ C(CS ∪ A).
The utterance an agent makes is chosen from the set of arguments that max-

imise its utility:

utterance ∈ {a ⊆ A|∀a, b U(a) ≥ U(b)}



Information Based Argumentation Heuristics 169

4 Example

To increase readability, we present our example in a somewhat informal manner.
The argument consists of a hypothetical dialogue between a government and
some other agent regarding the case for, or against, weapons of mass destruc-
tion(WMDs) existing at some location.

Assume that our agent (α) would like to show the existence of WMDs, i.e.
g = WMD, and that the following arguments exist in the agent’s private KB
(where the context is clear, we omit brackets):

(�, spysat), (�, chemicals), (�, news), (�, factories)
(�, smuggling), (smuggling, ¬medicine), (news, WMD)
({factories, chemicals}, WMD), (spysat, WMD)
({sanctions, smuggling, factories, chemicals}, ¬medicine)

Then, by following the first heuristic, the following dialogue might occur:

(1) (α) (�, news), (news, WMD)
(2) (β) (�, ¬news), (�factories), (factories, medicine), (medicine, ¬WMD)
(3) (α) (�, smuggling), (smuggling, ¬medicine), (�, spysat), (spysat,WMD)
(4) (β) {}
(5) (α) {}

Informally, α begins by pointing out that the newspapers claim that WMDs
exist. β counters by explaining that the newspapers don’t actually say that, and
stating that according to its information, factories exist which produce medicine.
The existence of medicines means that WMDs do not exist. α retorts by pointing
out that smuggling exists, and that smuggling means that medicines are not
actually being produced. It then says that it has spy satellite evidence regarding
the existence of WMDs. β cannot respond, and the dialogue ends.

α could have constructed a number of other arguments by making use of the
chemicals argument in turn 3. It could also have started the dialogue with the
spysat argument, as both of these choices would not have revealed any more
information than its selected moves did. However, it could not have used an
utterance such as (�, factories), (�, chemicals), (factories, chemicals, WMD),
as this would have had an information exposure cost of 2. Other, longer utter-
ances were also possible at all stages of the dialogue, but these would have had a
higher information exposure, and were thus not considered due to the heuristic.
The heuristic is thus able to keep the dialogue on track.

Moving onto the second heuristic, we assume that our agent has Uwin =
100, Udraw = 50, Ulose = 0. We will not fully describe the agent’s preference
rating functionρ, but assume that it includes the following:

(spysat, 100) (chemicals, 30)
(news, 0) ({medicine, chemicals}, 50)
(smuggling, 30) (factories, 0)
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Note that if both medicine and chemicals are present, the agent’s utility cost
is 50, not 80. Thus, ρ for an environment state containing both spysat and
chemicals will be assigned a cost of 130.

The dialogue might thus proceed as follows:

(1) (α) (�, news), (news, WMD)
(2) (β) (�, ¬news)
(3) (α) (�, factories), (�, chemicals),

({factories, chemicals}, WMD)
(4) (β) (�, sanctions),

({sanctions, factories, chemicals},
medicine), (medicine, ¬WMD)

(5) (α) (�, smuggling),
({sanctions, smuggling, factories,

chemicals}, ¬medicine)
(6) (β) {}
(7) (α) {}

In this dialogue, α claims that WMDs exist since the news says they do. β
retorts that he has not seen those news reports. α then points out that factories
and chemicals exist, and that these were used to produce WMDs. In response,
β says that due to sanctions, these were actually used to produce medicine.
α attacks this argument by pointing out that smuggling exists, which means
that the factories were not used to produce medicines, reinstating the WMD
argument. Both agents have nothing more to say, and thus pass. α thus wins the
game.

It should be noted that while α is aware that spy satellites have photographed
the WMDs, it does not want to advance this argument due to the cost of revealing
this information. The final utility gained by α for winning the argument is 20:
100 for winning the argument, less 30 for revealing smuggling, and 50 for the
presence of the chemicals and medicine literals. Also, note that the fact that β
revealed the existence of medicines cost α an additional 20 utility. As mentioned
previously, this behaviour is only applicable in some domains.

5 Discussion

Looking at Moore’s three criteria for an argumentation strategy, we see that our
heuristic fulfils its requirements. If the focus of an argument were not maintained,
more information would be given than is strictly necessary to win. This fulfils the
first requirement. The second and third requirements are met by the heuristic’s
respective utterance generation procedures (definitions 7 and 9).

It is possible to subsume the first heuristic within the second by assigning a
very high utility for winning a dialogue, while assigning equal utility costs to all
the literals in an agent’s KB. Our second heuristic is more capable than than the
first: in the utility based approach, an agent may be willing to draw (or lose) an
argument as it would yield it more utility than a win. This idea carries through
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to real life. One may not want to win an argument with another party at all
costs, as it might disadvantage one in further interactions with the party.

It should also be noted that nothing in our framework causes literals to cost
utility. Many scenarios can be imagined wherein revealing a literal causes a
utility gain. For example, if an agent would like to steer a conversation in a
certain direction, it might gain utility for revealing literals relating to that topic,
even though those might, in the long run, weaken its argument.

One disadvantage of the heuristics described here is their exponential com-
putational complexity. In the worst case, every element of the powerset of ar-
guments must be considered as an utterance. However, in the case of the first
heuristic, longer utterances will usually have a higher level of information expo-
sure. In the case of the second heuristic, longer utterances will have higher cost
if all literals cost, rather than give, the agent utility. Thus, it is possible to adapt
the heuristics and reduce their average case computational cost.

Our approach seems to share much in common with the “sceptical” approach
to argumentation. When arguments conflict, we refuse to decide between them,
instead ruling them both invalid. This means that our reasoning procedure is
not complete, given the (rather convoluted) set of arguments (�, A), (�, B),
(A, ¬B), (B, ¬A), (A, C), (B, C), (¬A, C), (¬B, C) we can intuitively see that C
should hold, but doesn’t. Other argumentation systems (namely those utilising
the unique–status–assignment approach [4]) are similarly incomplete, leaving
this an open area for future research. Our sceptical approach does yield a sound
system, as no conflicting arguments will remain in the final set of arguments.
Our underlying reasoning procedure is overly sceptical when compared to other
argumentation frameworks, as once a literal appears in the conflict set, it cannot
be removed. This does limit its usefulness in complex dialogues. We created our
own framework for a number of reasons, including:

– The abstract nature of many frameworks (e.g. [16]) makes arguments atomic
concepts. We needed a finer level of granularity so as to be able to talk about
which facts are exposed (allowing us to measure the amount of information
revealed during the dialogue process). Less abstract frameworks (e.g. [18,19]),
while looking at concepts such as derivability of arguments, still have as their
main focus, the interactions between arguments.

– Almost all other frameworks define higher level concepts in terms of argu-
ments attacking, defeating and defending one another. For us, the concept
of one argument justifying another is critical, together with the concept of
attack.

– Other argumentation systems contain concepts which we do not require, such
as a preference ordering over arguments.

Another significant difference between our argumentation framework and most
existing approaches is the scope of arguments. In our approach, agents can be
aware of and utter arguments of which other agents are unaware. For example,
even if no other agent knew of the literals X and Y , an agent could make the
utterance ({X, Y }, Z). An agent arguing for ¬Z would then have no choice but
to try obtain a draw result.
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Finally, the simplicity of our framework makes illustrating the heuristic very
easy. Embedding it in another framework, while not a difficult task, would require
additional detail.

The way in which we represent the information “leaked” during the dialogue,
as well as calculate the agent’s net utility, while simple, allows us to start studying
dialogues in which agents attempt to hide information. Until now, most work in-
volving utility and argumentation has focused on negotiation dialogues (e.g. [20]).
We propose a number of possible extensions to the work presented in this paper.

One simple extension involves the addition of a context to the agent’s cost. In
other words, given that fact A, B and C are known, we would like to be able to
capture the notion that it is cheaper to reveal D and E together than as speech
acts at different stages of the dialogue. Another form of context, which often
appears in real world dialogues, occurs when two different pieces of information
help derive a third, at different costs. In this case, the agent might be happy to
reveal one without revealing the other, but currently, we are unable to perform
complex reasoning about which to reveal. Without some form of lookahead to
allow the agent to plan later moves, this extension is difficult to utilise. Once
some form of lookahead exists, the addition of opponent modelling can further
enhance the framework. Experimentally, evaluating the effects of various levels
of lookahead, as well as different forms of opponent modelling might yield some
interesting results.

The way in which we handle conflicts is also open to debate. At the argu-
mentation framework level, enhancements are required that allow one to present
further evidence in support of a literal. By increasing the complexity of the
model, methods for retracting literals can be introduced, opening up a whole
host of questions at the heuristic level. For example, how does retracting sup-
port for a literal influence the information an opponent has of the retracting
agent’s knowledge base?

We have begun using the utility based heuristic to perform contract moni-
toring in uncertain domains [17]. Here, utility is lost when the environment is
probed for its state, rather than whenever an utterance is made. The addition
of uncertainty opens up many avenues for future work, and we are currently
looking at incorporating learning into the heuristic as one way of coping with
uncertainty.

6 Conclusions

In this paper, we proposed two related heuristics for argumentation. The first at-
tempts to minimise the number of literals revealed in the course of an argument,
while the second assigns a utility to each literal, and attempts to maximise an
agent’s utility gain. While these strategies arise in many real world situations,
we are unaware of any computer based applications that make use of these
techniques. To study the heuristics in more detail, we proposed an argumenta-
tion framework that allowed us to focus on them in detail. Several novel features
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emerged from the interplay between the heuristics and the framework, including
the ability of an agent to win an argument that it should not have been able
to win (if all information were available to all dialogue participants), and the
fact that an agent may prefer to draw, rather than win an argument. While we
have only examined a very abstract model utilising the heuristics, we believe
that many interesting extensions are possible.
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Abstract. In situations where self-interested agents interact repeatedly,
it is important that they are endowed with negotiation techniques that en-
able them to reach agreements that are profitable in the long run. To this
end, we devise a novel negotiation algorithm that generates promises of
rewards in future interactions, as a means of permitting agents to reach
better agreements, in a shorter time, in the present encounter. Moreover,
we thus develop a specific negotiation tactic based on this reward genera-
tion algorithm and show that it can achieve significantly better outcomes
than existing benchmark tactics that do not use such inducements. Specif-
ically, we show, via empirical evaluation, that our tactic can lead to a 26%
improvement in the utility of deals that are made and that 21 times fewer
messages need to be exchanged in order to achieve this.

1 Introduction

Negotiation is a fundamental concept in multi-agent systems (MAS) because it
enables (self-interested) agents to find agreements and partition resources effi-
ciently and effectively. Recently, a growing body of work has advocated the use of
arguments as a means of finding good agreements [9]. Specifically, it is hypoth-
esised that negotiation using persuasive arguments (such as threats, promises
of future rewards, and appeals) allows agents to influence each others’ prefer-
ences to reach better deals either individually or as a group. Most approaches
to persuasive negotiation (PN), however, either focus mainly on the protocol
[6,8,5] used to argue and do not give any insight into the negotiation strategies
to be used or fail to give clear semantics for the arguments that are exchanged
in terms of their relationship with the negotiated issues [11,5]. Moreover, most
PN reasoning mechanisms adopt a defeasible logic approach [1,9], rather than
the utilitarian approach that we use here. The downside of this logic focus is
that it cannot cope as well with the many forms of uncertainty that inevitably
arise in such encounters and that it can hardly be benchmarked against standard
negotiation algorithms [2,3].

Against this background, in this work we present a novel reasoning mechanism
and protocol for agents to engage in persuasive negotiation in the context of re-
peated games. We choose repeated games because it is a type of encounter where
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we believe that persuasive techniques are likely to be most effective (because ar-
guments can be made to directly impact future encounters). Now, such encoun-
ters have been extensively analysed in game theory [7], but are seldom considered
by agent-based negotiation mechanisms. This is a serious shortcoming because
in many applications agents need to interact more than once. Specifically, our
mechanism constructs possible rewards1 in terms of constraints on issues to be
negotiated in future encounters (hence their semantics are directly connected to
the negotiated issues) and our protocol is an extension of Rubinstein’s alternat-
ing offers protocol [12] that allows agents to negotiate by exchanging arguments
(in the form of promises of future rewards or requests for such promises in future
encounters).

In more detail, our mechanism gives agents a means of influencing current and
future negotiations through promises of rewards, rather than just exchanging of-
fers and counter offers that only impact on the outcome of the present encounter
[5,11]. Thus, we make the rewards endogenous to the negotiation process by as-
similating a promise of a reward to promised constraints on resources that need
to be negotiated in future. In so doing, we directly connect the value of the
argument to the value of the negotiated issues and this allows us to evaluate
arguments and offers on the same scale. For example, a car seller may reward
a buyer (or the buyer might ask for the reward) who prefers red cars with a
promise of a discount of at least 10% (i.e. a constraint on the price the seller
can propose next time) on the price of her yearly car servicing if she agrees to
buy a blue one instead at the demanded price (as the buyer’s asking price for
the red car is too low for the seller). Now, if the buyer accepts, it is a better
outcome for both parties (the buyer benefits because she is able to make savings
in future that match her preference for the red car and the seller benefits in that
he reduces his stock and obtains immediate profit).

Such promises are important in repeated interactions for a number of reasons.
First, agents may be able to reach an agreement faster in the present game by
providing some guarantees over the outcome of subsequent games. Thus, agents
may find the current offer and the reward worth more than counter-offering
(which only delays the agreement and future games). Second, by involving is-
sues from future negotiations in the present game (as in the cost of servicing in
the example above), we effectively expand the negotiation space considered and,
therefore, provide more possibilities for finding (better) agreements in the long
run [4]. For example, agents that value future outcomes more than their oppo-
nent (because of their lower discount factors) are able to obtain a higher utility
in future games, while the opponent who values immediate rewards can take
them more quickly. Thirdly, if guarantees are given on the next game, the cor-
responding negotiation space is constrained by the reward, which should reduce
the number of offers exchanged to search the space and hence the time elapsed
before an agreement is reached. Continuing the above example, the buyer starts

1 We focus on rewards because of their clear impact on agreements in the context we
consider and because we expect threats and appeals to follow similar principles to
those we elucidate here.
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off with an advantage next time she wants to negotiate the price to service her car
and she may then not need to negotiate for long to get a reasonable agreement.

Given this, this work advances the state of the art in the following ways. First,
we develop a Reward Generation Algorithm (RGA) that calculates constraints
(which act as rewards) on resources that are to be negotiated in future games.
The RGA thus provides the first heuristics to compute and select rewards to be
given and asked for in our new extension of Rubinstein’s protocol. Second, we
develop a specific Reward Based Tactic (RBT) for persuasive negotiation that
uses the RGA to generate combinations of offers and rewards. In so doing, we
provide the first persuasive negotiation tactic that considers the current nego-
tiation game as well as future ones, to generate offers and arguments and thus
reach better agreements faster than standard tactics in the long run.

The rest of the paper is structured as follows. Section 2 provides the basic
definitions of the negotiation games we consider, while section 3 describes how
persuasive negotiation can be used in such games. Section 4 details RGA and
section 5 shows how offers and promises are evaluated. Section 6 describes RBT
and section 7 evaluates its effectiveness. Finally, section 8 concludes.

2 Repeated Negotiation Games

Let Ag be the set of agents and X be the set of negotiable issues. Agents ne-
gotiate about issues x1, · · · , xn ∈ X where each one has a value in its domain
D1, · · · , Dn. Then, a contract O ∈ O is a set of issue-value pairs, noted as
O = {(x1 = v1), · · · , (xm = vm)}.2 We will also note the set of issues involved in
a contract O as X(O) ⊆ X . Agents can limit the range of values they can accept
for each issue, termed its negotiation range and noted as [vmin, vmax]. Each agent
has a (privately known) utility function over each issue Ux : Dx → [0, 1] and the
utility over a contract U : O → [0, 1] is defined as U(O) =

∑
(xi=vi) wi · Ux(vi),

where wi is the weight given to issue xi and
∑

wi = 1. We consider two agents
α, β ∈ Ag having utility functions designed as per the Multi-Move Prisoners’
Dilemma (MMPD) (this game is chosen because of its canonical and ubiquitous
nature) [13]. According to this game, α’s marginal utility δU is higher than β’s
for some issues, which we note as Oα, and less for others, noted as Oβ , where
Oα ∪ Oβ = O.

While it is possible to apply rewards to infinitely or finitely repeated games,
we focus on the base case of one repetition in this work because it is simpler to
analyse and we aim to understand at a foundational level the impact that such
promises may have on such encounters. These games are played in sequence and
there may be a delay θ between the end of the first game and the beginning of
the second one. In a game, one agent (α or β) starts by making an offer O ∈ O
and the opponent may then counter-offer or accept. The agents may then go on
counter-offering until an agreement is reached or one of the agents’ deadlines
(tαdead or tβdead) is reached. If no agreement is reached before the deadline, the
agents obtain zero utility (in either the first or second game). We also constrain
2 Other operators ≥, ≤ could also be used.
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the games, and further differentiate them from the case where agents play one
game each time independently of the previous one, by allowing the second game
to happen if and only if the first game has a successful outcome (i.e. an agree-
ment is reached within the agents’ deadlines and the contract is executed). In
so doing, there is no possibility for agents to settle both outcomes in one nego-
tiation round. The agents may also come to an agreement in the first game but
fail to reach one in the second one, in which case the agents only obtain utility
from the outcome of the first game.

If an agreement is reached, the agents are committed to enacting the deal settled
on. This deal comes from the set of possible contracts which, in the first game, is
captured by O1 and, in the second one, by O2. During these games, as time passes,
the value of the outcome decreases for each agent according to their discount fac-
tor (noted as εα for agent α). This factor denotes how much the resources being
negotiated decrease in usefulness over time. Each agent is also assumed to have a
target utility to achieve over the two games (noted as L ∈ [0, 2]). This target can
be regarded as the agent’s aspiration level for the combined outcomes of the two
games [3]. This target must, therefore, be less than or equal to the sum of the max-
imum achievable utility over the two games (2 in the case an agent has a ε = 0 and
exploits both games completely); that is L ≤ 1+e−ε(θ+t), where 1 is the maximum
achievable utility in an undiscounted game.

Agents use the illocutions propose(α, β, O) and accept(α, β, O) to make and
accept offers respectively.Additionally, they may use persuasive illocutions such as
reward(α, β, O1, O2) and askreward(α, β, O1 , O2). The former means α makes an
offer O1 and promises to give reward O2. The latter that α asks β for a promise to
give reward O2 (we detail the contents of O2 in the next section). Hence, while the
promise of a reward aims to entice an opponent to accept a low utility contract in
the current encounter, asking for a reward allows an agent to claim more in future
negotiations (in return for concessions in the current one). The time between each
illocution transmitted is noted as τ . Then, the discount due to time is calculated as
e−ε(θ+t) between the two games and e−ε(τ+t) between offers [7] where t is the time
since the negotiation started (note that we expect θ >> τ generally). The value of
ε scales the impact of these delays, where a higher value means a more significant
discounting of an offer and a lower value means a lower discounting effect.

3 Applying Persuasive Negotiation

In persuasive negotiation, agents either promise to give rewards to get their op-
ponent to accept a particular offer or ask for such promises in order to accept
an offer. In our case, rewards are specified in the second game in terms of a
range of values for each issue. Thus, giving a reward equates to specifying a
range such as vx > 0.5 for issue x in O2 ∈ O2 to an agent whose utility increases
for increasing values of x. Conversely, asking for a reward means specifying
vx < 0.4 in O2 for the asking agent (whose utility increases for decreasing val-
ues of x). Now, agents may find it advantageous to accept such rewards if it costs
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them more to counter-offer (due to their discount factor) or if they risk passing
their deadline (or their opponent’s). Here, we do not deal with the issues related
to whether the agents keep to their promises or how to tackle the uncertainty
underlying this (we simply assume they do), but rather we focus on the reasoning
mechanism that the agents require in order to negotiate using rewards.

Specifically, we propose that agents use the level to which they concede in the
first game in order to decide on what to offer or ask for as a reward in the second
one. This is graphically illustrated in figure 1 where O1 ∈ O1 and O2 ∈ O2 are
the proposed offer and reward respectively.

Reward = Guaranteed
share for  in O2

O1 O2

Agreement in O1 where 
concedes more than 

Negotiable
part

Fig. 1. Representation of an offer O1 made in the first game and a reward O2 for β in
the second game

As can be seen, α exploits β (by taking a larger share of the pie) through the
offer O1 or alternatively β concedes more than α (depending on who makes the
offer). The promised reward offered or asked for in the second game then tries to
compensate for the exploitation/concession applied to the first game. Now, one
strategy that produces this behaviour is the following: the higher the concession,
the higher will be the reward demanded, while the lower the concession, the
higher will be the reward given.3 This strategy can be seen as a type of trade-off
mechanism whereby agents take gains in the present (or the future) in return
for losses in the future (or in the present) [10].

4 Reward Generation

Building on the reasoning mechanism presented in section 3, we now develop our
reward generation algorithm (RGA) that determines the level of concession made
in the first game and hence determines the value of the corresponding reward,
and finally decides whether to send it or not. First, we assume that an agent has
some means of generating offers O1. In line with most work on negotiating in the
presence of deadlines, we assume the agent’s negotiation tactic concedes to some
extent until an agreement is reached or the deadline is passed [2]. Then, at each
step of the negotiation, based on the concessions made in an offer O1 ∈ O1, RGA

3 It should be noted that while the figure pictures a zero-sum game, the applicability
of rewards is not limited to such situations. Instead, they can be applied to more
complex games such as the MMPD, for which we detail the procedure in the next
section (and which we use in our experiments in section 7).
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Algorithm 1. Main steps of the RGA
Require: O1 ∈ O1, L

1: Compute concessions in Oα
1 and Oβ

1 . {Here the agent determines how much both agents concede
on the issues for which they have a higher and lower δU than their opponent. }

2: Select O2 ∈ O2 that matches the level of concession in O1

3: Check whether the combination of O and O2 satisfies L, adjust [vmin, vmax] for second game

according to values in O2 and send offer and reward.

computes the reward O2 ∈ O2 and decides if it is to be asked for or given. In
more detail, algorithm 1 outline the main steps of RGA which are then detailed
in the following subsections.

4.1 Step 1: Compute Concession Degrees

In this context, the degree to which an agent concedes in any game is equiv-
alent to the value it loses on some issues to its opponent relative to what
the opponent loses to it on other issues. Assuming (x = vx

1 ) ∈ O1 is the
value of an issue x, and [vx

max, vx
min] is its negotiation range, then we define

Ux
1 = Ux(vx

1 ), Ux
max = max{Ux(vx

min), Ux(vx
max)}, and Ux

min = min{Ux(vx
max),

Ux(vx
min)}. From these, we can compute the maximum an agent could get as

Umax =
∑

x∈X(O) wxUx
max, the minimum as Umin =

∑
x∈X(O) wxUx

min and the
actual utility as U1 =

∑
x∈X(O) wxUx

1 where wx is α’s relative weight of is-
sue x and

∑
wx = 1. These weights can be ascribed the same values given to

the weight the issue has in the utility function and can be normalised for the
number of issues considered here. Then, the concession degree on the offer O is
computed as:

con(O) =
Umax − U1

Umax − Umin
(1)

It is then possible to calculate concessions on issues with higher and lower δU
for α using conα(Oα

1 ) and conα(Oβ
1 ) respectively. Then, the complement of these

functions (i.e. 1− conα(Oα
1 ) and 1− conα(Oβ

1 )) represents how much β concedes
to α from α’s perspective (or how much α exploits β).

4.2 Step 2: Determine Rewards

To determine which agent concedes more in the game (given that they play a
MMPD), α needs to compare its degree of concession on the issues with higher
δU than β (i.e. Oα

1 ) and those with lower δU than β (i.e. Oβ
1 ) (in a zero sum

game this is calculated for all issues). To this end, we define three conditions
which refer to the case where α concedes as much as β (COOP ), concedes more
to β (CONC), and concedes less than β (EXPL) respectively as follows:

– COOP = true when conα(Oα
1 ) + conα(Oβ

1 ) = 1 (i.e. α has no grounds to
give or ask for a reward).

– CONC = true when conα(Oα
1 )+conα(Oβ

1 ) > 1 (i.e. α can ask for a reward).
– EXPL = true when conα(Oα

1 )+conα(Oβ
1 ) < 1 (i.e. α should give a reward).
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The above conditions capture the fact that an agent can only ask for a reward
if it is conceding in the first game and can only give one if it is exploiting in
the first game. It is possible to envisage variations on the above rules as agents
may not always want to give a reward to their opponent if they are exploiting in
the first game or they may want to ask for one even if they are not conceding.
However, these behaviours could be modelled in more complex strategies (which
we will consider in future work). But, in so doing, an agent may also risk a failed
negotiation. Here, therefore, we focus on the basic rules that ensure agents try
to maximise their chances of reaching a profitable outcome.

Now, having determined whether an argument is to be sent or not and whether
a reward is to be asked for or given, we can determine the value of the reward.
Given that an agent aims to achieve its target L, the value chosen for a reward
will depend on L and on (conα(Oα

1 ), conα(Oβ
1 )) (i.e. the degrees of concession

of the agent). We will consider each of these points in turn.
Given O1, the first game standing offer, the minimum utility α needs to get in

the second game is l2 = L − U(O1). We then need to consider the following two
cases (remember e−ε(θ+t) is the maximum that can be obtained in the second
game with discounts). Firstly, if l2 ≤ e−ε(θ+τ+t) it is still possible for α to reach
its target in the second game (provided the agents reach an agreement in the
first one) and, therefore, give (or ask for) rewards as well. The larger l2 is, the
less likely that rewards will be given (since less can be conceded in the second
game and still achieve L). Secondly, if l2 > e−ε(θ+τ+t), it is not possible to give
a reward, but an agent may well ask for one in an attempt to achieve a value as
close as possible to l2.

For now, assuming we know l2 ≤ e−ε(θ+τ+t), it is possible to determine how
much it is necessary to adjust the negotiation ranges for all or some issues in
O2 in order to achieve l2. Specifically, the agent calculates the undiscounted
minimum utility l2

eε(θ+τ+t) it needs to get in the second game. Then, it needs
to decide how it is going to adjust the utility it needs on each issue, hence the
equivalent bound vout for each issue, in order to achieve at least l2

eε(θ+τ+t) . Here,
we choose to distribute the utility to be obtained evenly on all issues.4 Thus,
the required outcome vout of an issue in the second game can be computed as
vout = U−1

x

(
l2

e−ε(θ+t)

)
.

Having computed the constraint vout, the agent also needs to determine how
much it should reward or ask for. To this end, the agent computes the contract
Ō which satisfies the following properties:

conα(Ōα
2 ) = conα(Oβ

1 ) and conα(Ōβ
2 ) = conα(Oα

1 )

This is equivalent to our heuristic described in section 3 where the level of
concession or exploitation in the offer in the first game (i.e. here O1 = Oα

1 ∪Oβ
1 )

4 Other approaches may involve assigning a higher vout (hence a higher utility) on
some issues which have a higher weight in the utility function. In so doing, vout

may constrain the agent’s negotiation ranges so much for such issues that the two
agents’ ranges may not overlap and hence result in no agreement may be possible.
Our approach tries to reduce this risk.
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is mapped to the reward asked for or given in the second one (i.e. here Ō2 =
Ōα

2 ∪ Ōβ
2 ). Here also we adopt the same approach as for vout and distribute the

concessions evenly on all issues. Then, assuming linear utility functions and finite
domains of values for the issues, the above procedure is equivalent to reflecting
the level of concession on issues with higher δU by α onto those with higher δU
for β. This is the same as inverting equation 1 given a known Umax and Umin

(as defined in step 1), and finding vx
1 by assigning Ux

1 = U1 and inverting Ux
1

for each issue (a procedure linear in time with respect to the number of issues
considered). Let us assume that for an issue x this results in a bound vr (a
maximum or minimum according to the type of argument to be sent). Thus,
from Ō2, α obtains bounds for all issues in the rewards it can ask from or give
to β. Given this, we will now consider whether to send a reward based on how
vr and vout compare for an issue x.

4.3 Step 3: Sending Offers and Rewards

Assume that α prefers high values for x and β prefers low ones and that it has
been determined that a reward should be offered (the procedure for asking for
the reward is broadly similar and we will highlight differences where necessary).
Now, α can determine whether a reward will actually be given and what its value
should be according to the following constraints:

1. vr ≥ vout — α can promise a reward implying an upper bound vr on the
second game implying that α will not ask for more than vr. This is because
the target vout is less than vr and α can, therefore, negotiate with a revised
upper bound of v′max = vr and a lower bound of v′min = vout. When asking
for a reward, α will ask for a lower bound vr (i.e. v′min = vr) and negotiate
with the same upper bound vmax in order to achieve a utility that is well
above its target.

2. vout > vr — α cannot achieve its target if it offers a reward commensurate
with the amount it asks β to concede in the first game. In this case, α revises
its negotiation ranges to v′min = vout (with vmax remaining the same). In this
case, the agent does not send a reward but simply modifies its negotiation
ranges. Now, if it were supposed to ask for a reward, α cannot achieve its
target with the deserved reward. However, it can still ask β for the reward vr

(as a lower bound) and privately bound its future negotiation to v′min = vout

while keeping its upper bound at vmax. In so doing, it tries to gain as much
utility as possible.

Now, coming back to the case where l2 > e−ε(θ+τ+t) (implying vout > vr as
well), the agent that intends to ask for a reward will not be able to constrain
its negotiation range to achieve its target (as in point 2 above). In such cases,
the negotiation range is not modified and the reward may still be asked for (if
CONC = true).

Given the above final conditions, we can summarise the rules that dictate when
particular illocutions are used and negotiation ranges adjusted, assuming an offer
O1 has been calculated and O2 represents the associated reward as shown below:
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Algorithm 2. Step 3 of RGA
if COOP or (EXPL and vout > vr) for x ∈ X(O2) then

propose(α, β, O1).
end if
if CONC and l2 ≤ e−ε(θ+τ+t) then

askreward(α, β, O1, O2) and modify [vmin, vmax] for second game.
end if
if CONC and l2 > e−ε(θ+τ+t) then

askreward(α, β, O1, O2).
end if
if EXPL and vout ≤ vr for x ∈ X(O2) then

reward(α, β, O1, O2) and modify [vmin, vmax] for second game.

end if

With all this in place, the next section describes how the recipient of the above
illocutions reasons about their contents.

5 Evaluating Offers and Rewards

We now describe how an agent evaluates the offers and rewards it receives.
Generally, when agents negotiate through Rubinstein’s protocol, they accept an
offer only when the next offer Onext they intend to put forward has a lower
(additionally discounted due to time) utility than the offer Ogiven presented
to them by their opponent. However, agents using persuasive negotiation also
have to evaluate the incoming offer together with the reward they are being
asked for or are being promised. To address this, we follow a similar line of
reasoning as above and evaluate a received offer and reward against the offer
and reward the agent would have sent in the next negotiation step. From the
previous section, we can generally infer that a reward will imply a value vr for a
given issue which defines either a lower or an upper bound for that issue in the
next negotiation game. Therefore, given this bound, the agent may infer that the
outcome ev of any given issue will lie in [v′min, v′max] which might be equivalent
to or different from the agent’s normal negotiation ranges [vmin, vmax] and may
take into account the agent’s target vout (given its target l2) or the value vr itself
(as discussed in the previous section).

Specifically, assume β is the agent that is the recipient of a reward (given or
asked for) and that β prefers small values for the issue x being considered. Then,
let β’s negotiable range be [vmin, vmax] for the issue x and β’s target be lβ2 in the
second game (which implies that it needs at least vout for the issue in the second
game). Now, if β receives reward(α, β, O, Oa) (or askreward(α, β, O, O′a)) for
the second game, Oa implies that vα

r is the upper bound proposed for each issue
x in Oa (vα

r would be a lower bound in O′a). In the meantime, β has calculated
another offer Onew with a reward Ob in which a bound vβ

r is to be given to each
issue x in Ob. Then, for each issue x, β calculates the negotiable ranges given
vα

r as [vmin, min{vα
r , vout}] (or [vα

r , min{vout, vmax}] if O′a is asked for5) while it

5 This range assumes vout ≥ vα
r , but in cases where this is not true the reward proposed

by α is automatically rejected.
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calculates [vβ
r , min{vout, vmax}] given vβ

r . We assume β can then calculate (e.g. by
picking a value over a normal distribution defined in the negotiation range6) the
expected outcome of each range as evα

x for [vmin, vα
r ] (or [vα

r , min{vout, vmax}]
in the case of O′a) and evβ

x for [vβ
r , min{vβ

out, vmax}] in the case of Ob. Given
each of these expected outcomes for each issue, the overall expected outcomes,
EOa ∈ O2 and EOb ∈ O2, of the second game can be calculated given a reward.
Thus, EOa is the expected outcome of the reward given by α and EOb is that
for β. Given that these outcomes have been calculated, the agent then decides to
accept or counter offer using the rule below. This evaluates the offer generated
against the offer received to decide whether to accept the offer and promise
received or send a reward illocution (note the addition of discount factors to
reflect the time till the next game and between illocutions, that is, sending the
counter offer, receiving an accept, and sending the first offer in the second game):

if U(Onew) · e−εβ (τ+t) +(U(EOb) · e−εβ (θ+τ+t) ≤ U(O) · e−εβ (2τ+t))+ (U(EOa) · e−εβ (θ+3τ+t)

then
accept(β, α, O)

else
reward(β,α, Onew , Ob)

end if

As can be seen above, if the sum of the utility of the offer and the expected
utility of the promise is higher than the offer and reward proposed by β (dis-
counted over time), α’s proposition is accepted. Otherwise, β counteroffers with
its promise. If instead, a reward O′b were to be asked for by β along with an of-
fer Onew , then β will apply a similar decision rule as above (where EO′b is the
expected outcome β calculates for the reward it asks from α) in which we sim-
ply replace EOb with EO′b. Finally, in the case where β has received a persuasive
offer and can only reply with another offer without any argument, β calculates
the expected outcome of the second game using only its altered negotiation range
[vmin, min{vout, vmax}] to elicit EO′′b (which we use to replace EOb with in the rule
above). Note that the second game is left more uncertain in the latter case since
the negotiation range has not been tightened by any reward and so the agents may
take more time to reach an agreement in the second game (as per section 1).

Having described our mechanism for sending and evaluating rewards and offers,
we will now propose a novel tactic that uses it to perform persuasive negotiation.

6 The Reward Based Tactic

As described in section 4, RGA requires an offer generated by some negotiation
tactic in order to generate the accompanying reward. In this vein, the most
common such tactics can be classified as: (i) behaviour-based (BB) – using some
form of tit-for tat or (ii) time-based – using Boulware (BW) (concedes little in

6 This is the technique we adopt here. However, other techniques such as fuzzy rea-
soning or learning mechanisms could also be used to get this value.



Negotiating Using Rewards 185

the beginning before conceding significantly towards the deadline) or Conceder
(CO) (starts by a high concession and then concedes little towards the deadline)
[2].7 Now, many of these tactics start from a high utility offer for the proponent
(here α) and gradually concede to lower utility ones. In turn, this procedure
automatically causes RGA to start by promising rewards and then gradually
move towards asking for rewards.

To ground our work, we present a novel reward-based tactic (RBT) (based
on Faratin’s trade-off tactic [3]) that either asks for or gives a reward at any
point in the negotiation in order to reach an agreement. To do so, however, the
agent needs to know how to evaluate incoming offers and rewards and generate
counter-offers accordingly. Given this, we will consider the three main cases in
calculating the response to having received an offer and a proposed reward (see
algorithm 3).

Case 1: An offer and a reward have been received and it is possible to counter
offer with a reward
In this case, α needs to calculate combinations of rewards and offers and choose
the combination that it deems most appropriate to send to β. To calculate these
combinations, α first needs to determine the overall utility each combination
should have. To achieve this, we use a hill climbing method similar to Faratin
et al.’s tactic. In this method, the agent tries to find an offer that it believes is
most favourable to its opponent, while not necessarily conceding too much. In
our case (particular for the MMPD), this procedure equates to the agent trying
to gain more utility on the issues on which it has a higher δU and less on those
for which it has a lower δU than β.8 In so doing, the strategy can maximise joint
gains in the repeated negotiation encounter.

Thus, the utility to be conceded in the next offer (or utility step), Su, is
calculated according to the difference that exists between the agent’s previous
offer and the last one sent by its opponent scaled by a factor f (the first offer is
arbitrarily chosen using a standard tactic):

Su(O1, O2, O
′
1, O

′
2, f) =

U(O1)e−t+U(EO2)e−(θ+t)

f

−U(O′
1)e−(τ+t)+U(EO′

2)e−(θ+2τ+t)

f

where O1 and EO2 are the previous offer and expected outcome in the second
game from α’s reward O2 respectively and O′1 and EO′2 are the current offer and
the expected outcome of β’s argument O′2, respectively. If α does not specify
a reward O2, EO2 is calculated as per section 5 given the normal negotiation

7 Other negotiation tactics might also be resource-based or dependent on other factors.
The tactics we select here have been chosen because they have been demonstrated
to be relatively successful and are among the most common ones studied in the
literature [10,2].

8 Note this is different from the point discussed in footnote 4 since here we do not
constrain the negotiation ranges, but rather search for offers that may be profitable
to both parties.
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ranges. Similarly, EO′2 is also calculated in the same way if β does not specify a
reward with the previous offer.

Given the utility step Su, it is then possible to calculate the utility Nu of the
combination of the next offer and reward using the following equation:

Nu = U(O1)e−(2τ+t) + U(EO2)e−(θ+3τ+t)

−Su(O1, O2, O
′
1, O

′
2, f)

(2)

The next step involves generating combinations of offers and rewards whose com-
bined utility is as close as possible to Nu. To this end, we use an optimisation
function OptComb : [0, 2]×O1 ×O2 ×O1 ×O2 → O1 ×O2, based on linear pro-
gramming, that calculates the reward and offer whose values are most favourable
to β (but still profitable for α). OptComb therefore runs through RGA to find
the best possible rewards and the associated offers whose combined utility is less
than or equal to Nu and that concede more on issues for which β has a higher
marginal utility. RGA also informs RBT whether the reward is to be asked for
or given and whether negotiation ranges need to be modified (as described in
section 4). However, OptComb can also fail to find an optimal output (as a result
of the constraints being too strong (e.g. the target L being too high) or the op-
timizer not being able to find the solution in the specified number of steps) and
in these cases, we resort to another procedure described next (i.e. Cases 2 and 3).

Case 2: OptComb fails and the last offers made involved rewards
The agent cannot find a combination of a proposal and a reward whose utility
matches Nu. Therefore, it calculates an offer using the time-based heuristics
presented earlier.9

Case 3: OptComb fails and the last offers made did not involve rewards
It is possible to continue the same step-wise search for an agreement as in case
1. Here, our tactic calculates the offer whose utility is as close as possible to Nu
(without U(EO′2) or U(EO2)). Moreover, the offer calculated is such that it is
the one that is most similar to the offer by β. This is achieved by running an
optimization function OptProp : [0, 2] × O1 × O1 → O1 that calculates an offer
O1 such that O1 maximises the level of concession on issues with higher marginal
utility for the opponent (as in case 1) while still achieving Nu. In case the issues
being negotiated are qualitative in nature, the similarity based algorithm by [3]
may be used.

We capture all the above three cases in algorithm 3. As can be seen, RBT
only generates offers and rewards in the first game. In the second one, we use a
9 In this case, BB tactics would not be appropriate to generate an offer given previous

offers by the opponent. This is because some offers have been proposed in combi-
nation with a reward such that the concessions in the offers may not be monotonic
(an asked for reward may compensate for a concession in the offer or a concession
in the given reward may be compensated for by the higher utility of the offer). The
latter property is a requirement for BB (or even all hill-climbing tactics [3]) to work .
Therefore, either BW or CO is used to generate the offer since these are independent
of the previous offers made by the opponent.
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Algorithm 3. The RBT algorithm

Require: O1, O2, O′
1, O′

2
1: Use a mechanism to calculate EO2, EO′

2 {α calculates the expected outcomes of the
arguments as discussed in section 5.}

2: step = Su(O1, O2, O′
1, O′

2) {calculate the utility concession.}
3: nu = U(O1)e−t + U(EO2)e−(θ+2τ+t)− step {calculate the utility of the combination of

offer and reward to be generated.}
4: (O′′

1 , O′′
2 ) = OptComb(nu, O1, O2, O′

1, O′
2)

s. t. U(O′′
1 )e−t +U(EO′′

2 )e−(θ+2τ+t) ≤ nu {here the values in the combination are optimised
to be more favourable to β and as close as possible to nu.}

5: if OptComb succeeds then {Case 1}
6: send O′′

1 and O′′
2 {RGA decides whether the reward is asked from or given to β.}

7: else if OptComb fails & (both or one of O2 or O′
2 is not null) then {Case 2}

8: use BW or CO to generate O′′
1

9: send offer O′′
1 and modify [vmin, vmax] to achieve L as in RGA.

10: else if OptComb fails & (both O2 and O′
2 are null) then {Case 3}

11: step’ = Su(O1, null, O′
1, null) {calculate the step in utility.}

12: nu’ =U(O1)e−(2τ+t)− step’ {calculate the utility of the offer to be generated.}
13: O′′

1 = OptProp(nu’, O1, O′
1) s.t. U(O′′

1 ) ≤ nu’ {find the offer that is most favourable to
β but as close as possible to nu’.}

14: send offer O′′
1 and modify [vmin, vmax] to achieve L as in RGA.

15: end if

time-based or behaviour-based heuristic to calculate offers. While it is certainly
possible to generate offers using the optimisation function of RBT in the second
game, we do not do so in order to focus our analysis on the effect the bounds
imposed by rewards have on the outcome of the second game when agents use
basic tactics.

7 Experimental Evaluation

In this section, we describe a series of experiments that aim to evaluate the
effectiveness and efficiency of our PN model in repeated interactions. To this
end, we evaluate it against basic tactics using standard benchmark metrics. In
the following sections, we first detail the experimental settings and then provide
the results of these experiments.

7.1 Experimental Settings

Agents α and β negotiate over 4 issues x1, ..., x4 and their preferences are as per
a MMPD. Thus, δUα

x > δUβ
x , where x ∈ x1, x2 such that x1 and x2 are more

valued by α than β, while x3 and x4, are more valued by β than α (i.e. δUα
y >

δUβ
y , where y ∈ x3, x4). tmax is set to 2 seconds which is equivalent to around

300 illocutions being exchanged between the two agents (in one game).10 The
agents’ deadlines, tαdead and tβdead, are defined according to a uniform distribution
between 0 and 2 seconds. The discount factors, εα and εβ , are set to a value
between 0 and 1 and are drawn from a uniform distribution. The targets of the
10 Preliminary experiments with the negotiation tactics suggest that if the agents do

not come to an agreement within this time period, they never achieve any agreement
(even if the maximum negotiation time is extended).
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Table 1. Utility functions and weights of issues for each agent

Utility function and weight of each issue
Ux1 , wx1 Ux2 , wx2 Ux3 , wx3 Ux4 , wx4

α 0.4x1, 0.5 0.9x2, 0.2 1 − 0.2x1, 0.2 1− 0.6x2, 0.1
β 1 − 0.2x1, 0.4 1− 0.6x2, 0.1 0.9x2, 0.3 0.4x1, 0.2

agents Lα and Lβ are drawn from a uniform distribution between 0 and 2. We
set θ = 0.5 and τ = 0.0001 to simulate instantaneous replies and set the degree
of intersection of the negotiation ranges to 0.8 (which means that [vα

min, vβ
max]

overlap [vα
min, vα

max] and [vβ
min, vβ

max] by 80%).
We will further assume the first offer an agent makes in any negotiation is

selected at random from those that have the highest utility. Also, the agent that
starts the negotiation is chosen at random. This reduces any possible first-mover
advantage that one strategy may have over another (i.e. which loses less utility
due to discount factors). Moreover, in order to calculate the expected outcome
of the second game (as discussed in section 5), agents draw the outcome for
each issue from a normal distribution with its mean centred in the middle of
the agent’s negotiation range for the second game with a variance equal to 0.5.
Finally, in all our experiments we use ANOVA (ANalysis Of VAriance) to test
for the statistical significance of the results obtained.

Given these game settings, we define the populations of negotiating agents
in terms of the tactics they use. As discussed in section 6, a number of tactics
are available in the literature for experimentation and we will use BB tactics,
as well as BW and CO, to generate offers for the RGA algorithm. Moreover, we
will compare the performance of these with RBT. The settings of the strategies
(i.e. the combination of tactics for the two games) played by the agents is given
in table 2. Here, the populations of standard non-persuasive agents (i.e. discon-
nected from RGA) using only BB, BW, or CO in both games are noted as NT
(negotiation tactics), while those that are connected to RGA are noted as PNT
(persuasive negotiation tactics). The population of agents using RBT is noted
as RBT.

Table 2. Settings for agents’ tactics

Game Strategies
Non-Persuasive Persuasive

Type NT PNT RBT
1 BB, BW, CO PBB, PBW, PCO RBT
2 BB, BW, CO BB, BW, CO ANY

As can be seen from the above table, agents can use rewards in the first game
and revert to standard tactics for the second one. For example, a PNT agent,
using BW with RGA in the first game, uses BW in the second game. For RBT
agents, we randomly select among the three standard tactics.

Given that persuasive strategies like PNT and RBT can constrain their re-
wards and negotiation ranges according to their target L (as shown in section
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4.2), we also need to allow other non-persuasive tactics to constrain their ranges
accordingly to ensure a fair comparison. Thus, we allow all tactics to constrain
the ranges of the issues in the second game according to their target whenever
they reach agreements without the use of any arguments. The procedure to do
so is similar to that described in section 4.2.11 In the following experiments, we
use homogeneous populations of 80 agents for each of NT, PNT, and RBT and
also create a population of equal numbers of RBT and PNT agents (40 each)
which we refer to as PNT&RBT to study how RBT and PNT agents perform
against each other.

Given the populations of agents described above we next define the means used
to decide whether PN indeed achieves better agreements faster than standard
negotiation mechanisms. We therefore apply the following metrics:

1. Average number of offers — the average number of offers that agents need
to exchange before coming to an agreement. The smaller this number the
less time the agents take to reach an agreement.

2. Success rate — the ratio of agreements to the number of times agents meet
to negotiate.

3. Average utility per agreement — the sum of utility of both negotiating agents
over all agreements divided by the number of agreements reached.

4. Expected utility — the average utility weighted by the probability that an
agreement is reached.

Given these requirements, in the following subsection we detail experiments with
populations defined above and evaluate their performances.

7.2 Empirical Results

In this section, we postulate a number of hypotheses regarding the performance
of RGA and RBT and describe the results which validate them.

H1. Negotiation tactics that use RGA are more time efficient than those that do
not.

This hypothesis follows from the fact that we expect arguments to help agents
find agreements faster. Here we record the average number of offers (the lower
this number the more time efficient the agents are) an agent makes in order
to reach an agreement. For all populations of tactics, each agent meets another
agent 50 times and this is repeated 15 times and the results averaged. Thus it was
found that NT takes an average of 547 offers to reach an agreement, while PNT
strategies take 58 and PNT&RBT takes 56.5 offers per agreement (nearly 10
times less than NT). Thus, the performance of RBT is significantly better than
the other populations since it reaches agreements within only 26 offers (which is
less than NT by a factor of 21). Now, the reason for the superior performance

11 The difference between the constraint applied by the reward and by the target is
that the former applies the constraint to both agents, while the latter only applies
separately to each agent according to their individual targets.



190 S.D. Ramchurn et al.

of persuasive tactics in general is that the rewards make offers more attractive
and, as we expected, the shrinkage of negotiation ranges in the second game
(following from the application of the rewards) further reduces the negotiation
space to be searched for an agreement. The additional improvement by RBT
can be attributed to the fact that both negotiating agents calculate rewards
and offers (through the hill-climbing algorithm) that give more utility to their
opponent on issues for which they have a higher marginal utility (as explained
in section 6). Hence, this is faster than for PNT&RBT in which only one party
(the RBT) performs the hill-climbing.

These results suggest the outcomes of RBT and PNT populations should be
less discounted and should also reach more agreements (since they take less time
to reach an agreement and hence do not go over the agents’ deadlines). However,
it is not clear whether the utility of the agreements reached will be significantly
higher than for NT agents.

H2. Negotiation tactics that use the RGA achieve a higher success rate, expected
utility, and average utility than those that do not.

To test this hypothesis, we run the same experiments as above and record the
average utility per agreement and the number of agreements reached. Thus, it is
possible to calculate the expected utility, average utility per encounter, and the
success rate per game as explained earlier.

It was found that the success rate of persuasive strategies is generally much
higher than NT (0.87/encounter for NT, 0.99/encounter for PNT only, 1.0/en-
counter for PNT&RBT, and 1.0/encounter for RBT). This result12 clearly shows
that the use of RGA increases the probability of reaching an agreement. The sim-
ilar performance of RBT and PNT&RBT and the difference between PNT&RBT
and PNT shows that RBT agents, as well as being able to find agreements readily
with their similar counterparts, are also able to persuade PNT agents with more
attractive offers. This is confirmed by the fact that the average utility of persua-
sive strategies is generally higher13 (i.e. 1.9/encounter for PNT, 1.95/encounter
for PNT&RBT, and 2.03/encounter for RBT) than NT (i.e. 1.84/encounter).
Note that the difference in utility between NT and other tactics would be much
greater if discount factors εα and εβ were bigger (given the high average number
of offers NT uses (i.e. 547)).

Given the trends in success rate and average utility, the expected utility fol-
lowed a similar trend with NT agents obtaining 1.6/encounter, PNT 1.88/en-
counter (i.e. a 17.5% improvement over NT), PNT&RBT 1.95/encounter, and

12 Using ANOVA, it was found that for a sample size of 15 for each population of
PNT, PNT and RBT, and PNT only, with α = 0.05, F = 8.8 > Fcrit = 3.15 and
p = 4.41×10−4. These results prove that there is a significant difference between the
means of PNT and the other strategies. The success rate of NT agents was found to
be always lower than the other populations.

13 These results were validated statistically using ANOVA, where it was found that
F = 3971 > Fcrit = 2.73, and p = 7.36 × 10−80, for a sample size of 15 per
population and α = 0.05. These results imply that there is a significant difference
between the means of the populations.
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2.03/encounter for RBT agents only (representing a 26% better performance
than NT). Generally speaking, from the above results, we can infer that RGA,
used together with basic tactics, allows agents to reach better agreements much
faster and more often.

These results also suggest that PNT agents reach broadly similar agreements
(in terms of their utility) to NT agents (if we discount the fact that rewards
significantly reduce the time to reach agreements and increase the probability
of reaching an agreement). Now, as discussed in section 6, PNT agents usually
generate offers first (starting from high utility ones as for the NT agents) and
then calculate the rewards accordingly. Given this, the agents tend to start by
giving rewards and end up asking for rewards. As the negotiation proceeds (if
the offers are not accepted), the offers generally converge to a point where agents
concede nearly equally on all issues (irrespective of the marginal utilities of the
agents) and the rewards converge to a similar point. This, in turn, results in a
lower overall utility over the two games than if each agent exploits the other
one in each game in turn. Now, if rewards are selected in a more intelligent
fashion, as in RBT, the agents reach much higher overall utility in general. This
is because agents exploit each other more on the issues for which they have a
higher marginal utility than their opponent. This is further demonstrated by
the results of the RBT agents which suggest they reach agreements that have
high utility for both participating agents. However, it is not apparent whether
RBT agents are able to avoid being exploited by their PNT counterparts in
such agreements which RBT tries to make more favourable to PNT agents (as
described in section 6).

H3. Agents using RBT are able to avoid exploitation by standard tactics con-
nected to RGA (i.e. PNT).

In order to determine which tactic is exploited, we recorded PNT’s and
RBT’s average utility separately. Thus, it was found that on average, both RBT
and PNT agents obtained about the same average utility per agreement (i.e.
0.96/agreement). This result14 validates H3 and suggests that the hill-climbing
mechanism of RBT agents calculates offers that can convince the opponent with-
out reducing the utility of both RBT and PNT agents significantly (i.e. in small
steps) and also that it maximises joint gains through OptComb.

8 Conclusions

In this paper we introduced a novel persuasive negotiation protocol that allows
agents in the present encounter to give and ask for rewards in future encounters.
To complement this protocol, we also developed a reasoning mechanism that
consists of a reward generation algorithm (RGA) and a reward based tactic
(RBT). We then showed that RGA can improve the utility gain of standard
14 We validated this result using ANOVA with a sample of size 15 per strategy and

α = 0.05. Thus it was found that the null hypothesis (i.e. equal means for the two
samples) was validated with F0.13 < Fcrit = 4.10 and p = 0.71 > 0.05.
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negotiation tactics by up to 17%, and that RBT provides an additional utility
gain of 26% while using 21 times fewer messages to reach a deal.

Future work will look at extending our RGA and RBT to more than two
games and exploring other strategies to generate rewards as well as other types of
arguments such as threats and appeals. Furthermore, we will develop techniques
to deal with agents that may not fulfill their promises, through the use of trust.
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Abstract. This paper presents a coherentist approach to argumenta-
tion that extends previous proposals on cognitive coherence based agent
communication pragmatics (inspired from social psychology) and pro-
pose (1) an alternative view on argumentation that is (2) part of a more
general model of communication. In this approach, the cognitive aspects
associated to both the production, the evaluation and the integration of
arguments are driven by calculus on a formal characterization of cogni-
tive coherence.

1 Introduction

“Argumentation is a verbal, social and rational activity aimed at convincing
[. . . ] of the acceptability of a standpoint by putting forward a constellation of
proposition justifying or refuting the proposition expressed in the standpoint.”
[26, page 1].

In AI and MAS, argumentation frameworks have been put forward for mod-
elling inference, non-monotonic reasoning, decision making and argumentation-
based communication has been introduced has a way to refine multiagent
communication [17,11,4,3]. The syntax and semantics of argumentation have
been extensively studied, but the pragmatics of argumentation (theory of its use
in context) has not been inquired. While the conventional aspects of pragmat-
ics have been taken into account in the formalisms proposed for argumentation
dialogues, the cognitive aspects of argumentation have been less studied: when
does an agent argue, with whom, on what topic? What are the cognitive effects
of arguments (in terms of persuasion and integration)? What is the utility of the
argumentation? Are the agents satisfied with their dialogue?

Cognitive coherence theory [14,15,12] has been put forward as a way to model
the cognitive aspects of agent communication pragmatics (section 2). Inspired
from social psychology theories, cognitive coherence provides a native yet real-
istic modelling of the cognitive aspects of communication through the concept
of attitude change which captures the persuasive aspect inherent to all commu-
nications (section 3). In this paper, we extend the cognitive coherence approach
to argumentation and show how this extension allows to model the generative
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aspect of argumentation communication as well as the cognitive response to
persuasive arguments using a single set of principles (section 4). Finally, the
coverage of the proposed approach is discussed (section 5).

While at the beginning of this ongoing research work, this paper extends the
state of the art by (1) proposing an alternative (coherentist) view on argumen-
tation that is (2) part of a more general model of communication (including the
cognitive aspect of pragmatics) and (3) giving a fully computational characteri-
zation of this new model.

2 The Cognitive Coherence Framework

In cognitive sciences, cognitions gather together all cognitive elements: percep-
tions, propositional attitudes such as beliefs, desires and intentions, feelings and
emotional constituents as well as social commitments.

In cognitive or social psychology, most cognitive theories appeal to the concept
of homeostasis, i.e. the human faculty to maintain or restore some physiological
or psychological constants despite the outside environment variations. All these
theories share as a premise the coherence principle which puts coherence as the
main organizing mechanism: the individual is more satisfied with coherence than
with incoherence. The individual forms an opened system whose purpose is to
maintain coherence as much as possible.

The core of our theoretical model is the unification of the dissonance theory
from Festinger [7] and the coherence theory from Thagard [23]. In that context,
our main and original theoretical contribution has been to extend that model
to communication (which has not been treated by those two theorists) and to
develop a formalism suited to MAS.

2.1 Formal Characterization of Cognitive Coherence

While several formal characterizations of cognitive coherence have been made
(logic-based [18], neural network or activation network based [20], probabilistic
network [24], decision-theoretic, . . . ), we present one that is constraint satis-
faction based resulting in a simple symbolic-connexionist hybrid formalism (we
refer the reader to [22] for an introduction to this family of formalisms).

In this approach, cognitions are represented through the notion of elements.
We denote E the set of all elements. Elements (i.e. cognitions) are divided in
two sets: the set A of accepted elements and the set R of rejected elements. A
closed world assumption which states that every non-explicitly accepted element
is rejected holds. Since all the cognitions are not equally modifiable, a resistance
to change is associated to each element of cognition. In line with Festinger [7], a
cognition’s resistance to change depends on its type, age, as well as the way in
which it was acquired: perception, reasoning or communication. Resistances to
change allow to differentiate between beliefs that came from perception, beliefs
that came from reasoning and beliefs that came from communication as well
as to represent the individual commitment strategies associated with individual
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intention. Resistance to change can be accessed through the function Res :
E −→ R.

Those elements can be cognitively related or unrelated. For elements that
are directly related, two types of non-ordered binary constraints represent the
relations that hold between them in the agent’s cognitive model:

– Positive constraints : positive constraints represent positive relations like fa-
cilitation, entailment or explanatory relations.

– Negative constraints : negative constraints stand for negative relations like
mutual exclusion and incompatibility relations.

We note C+ (resp. C−) the set of positive (resp. negative) constraints and C =
C+∪C− the set of all constraints. For each of these constraints, a weight reflecting
the importance degree for the underlying relation can be attributed1. Those
weights can be accessed through the function Weight : C −→ R. Constraints
can be satisfied or not.

Definition 1 (Cognitive Constraint Satisfaction). A positive constraint is
satisfied if and only if the two elements that it binds are both accepted or both
rejected, noted Sat+(x, y) ≡ (x, y) ∈ C+ ∧ [(x ∈ A ∧ y ∈ A) ∨ (x ∈ R ∧ y ∈ R)].
On the contrary, a negative constraint is satisfied if and only if one of the two
elements that it binds is accepted and the other one rejected, noted Sat−(x, y) ≡
(x, y) ∈ C− ∧ [(x ∈ A ∧ y ∈ R) ∨ (x ∈ R ∧ y ∈ A)]. Satisfied constraints within a
set of elements E are accessed through the function Sat : E ⊆ E −→ {(x, y)|x, y ∈
E ∧ (Sat+(x, y) ∨ Sat−(x, y))}.

In that context, two elements are said to be coherent if they are connected by a
relation to which a satisfied constraint corresponds. And conversely, two elements
are said to be incoherent if and only if they are connected by a non-satisfied
constraint. These relations map exactly those of dissonance and consonance in
Festinger’s psychological theory. The main interest of this type of modelling is
to allow defining a metric of cognitive coherence that permits the reification of
the coherence principle in a computational calculus.

Given a partition of elements among A and R, one can measure the coherence
degree of a non-empty set of elements E . We note Con() the function that gives
the constraints associated with a set of elements E . Con : E ⊆ E −→ {(x, y) |
x, y ∈ E , (x, y) ∈ C}.

Definition 2 (Cognitive Coherence Degree). The coherence degree C(E),
of a non-empty set of elements, E is obtained by adding the weights of constraints
linking elements of E which are satisfied divided by the total weight of concerned
constraints. Formally:

C(E) =

∑
(x,y)∈Sat(E) Weight(x, y)

∑
(x,y)∈Con(E) Weight(x, y)

(1)

1 This is a way of prioritizing some cognitive constraints as it is done in the BOID
architecture [1].
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The general coherence problem is then:

Definition 3 (Cognitive Coherence Problem). The general coherence
problem is to find a partition of the set of elements into the set of accepted
elements A and the set of rejected elements R that maximize the cognitive co-
herence degree of the considered set of elements.

It is a constraint optimization problem shown to be NP-complete in [25]. An
agent can be partially defined as follows:

Definition 4 (Agent’s State). An agent’s state is characterized by a tuple
W = {P , B, I, SC, C+, C−, A, R}, where:

– P,B,I are sets of elements that stand for perceptions, beliefs and individual
intentions respectively, SC is a set of elements that stand for the agent’s
agenda, that stores all the social commitments from which the agent is either
the debtor or the creditor;

– C+ (resp. C−) is a set of non-ordered positive (resp. negative) binary con-
straints over P ∪ B ∪ I ∪ SC such that ∀(x, y) ∈ C+ ∪ C−, x 
= y;

– A is the set of accepted elements and R the set of rejected elements and
A ∩ R = ∅ and A ∪ R = P ∪ B ∪ I ∪ SC.

Beliefs coming from perception (P) or from reasoning (B) as well as intentions
(I) constitute the private cognitions of the agent, while public or social cognitive
elements are captured through the notion of social commitments (as defined
in [16]). Social commitment has proven to be a powerful concept to capture
the interdependencies between agents [21]. In particular, it allows to represent
the semantics of agents’ communications while respecting the principle of the
asymmetry of information that indicates that in the general case what an agent
say does not tell anything about what he thinks (but still socially commits him).

This agent model differs from classical agent modelling in that motivational
attributes are not statically defined but will emerge from the cognitive coherence
calculus. Concretely, this means that we don’t have to specify the agent’s desires
(the coherence principle allows to compute them) but only potential intentions
or goals. Examples to be given in this paper will highlight the motivational drive
associated with cognitive coherence.

Incoherence being conceptually close to the notion of conflict, we use a typol-
ogy borrowed from works on conflicts [5].

Definition 5 (Internal vs. External Incoherences). An incoherence is said
to be internal iff all the elements involved belong to the private cognitions of
the agent, else it is said to be external.

2.2 Local Search Algorithm

Decision theories as well as micro-economical theories define utility as a property
of some valuation functions. A function is a utility function if and only if it
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reflects the agent’s preferences. In the cognitive coherence theory, according to
the afore-mentioned coherence principle, coherence is preferred to incoherence
which allows to define the following expected utility function2.

Definition 6 (Expected Utility Function). The expected utility for an agent
to attempt to reach the state W ′ from the state W (which only differ by the
acceptance state of a subset E of the agent’s elements) is expressed as the dif-
ference between the incoherence before and after this change minus the cost of
the dialogue moves (expressed in term of the resistance to change of the modified
elements): G(W ′) = C(W ′) − C(W ) −

∑
X∈E Res(X).

At each step of his reasoning, an agent will search for a cognition acceptance
state change which maximizes this expected utility. If this cognition is a commit-
ment, the agent will attempt to change it through dialogue and if it is a private
cognition (perceptions, beliefs or intentions), it will be changed through attitude
change.

A recursive version of the local search algorithm the agents use to maximize
their cognitive coherence is presented in Figure 1 and consists of four phases:

1. For each element e in the agent state, calculate the expected utility and the
gain (or loss) in coherence that would result from flipping e, i.e. moving it
from A to R if it is in A, or moving it from R to A otherwise.

2. Produce a new solution by flipping the element that most increases coher-
ence, or with the biggest positive expected utility if coherence cannot be
improved. Update the resistance to change of the modified element to avoid
looping.

3. Repeat 1 and 2 until either a social commitment is encountered (a dialogue
is needed as an attempt to flip it) or until there is no flip that increases
coherence and no flip with positive expected utility.

4. Return result. The solution will be applied if and only if the cumulated
expected utility is positive.

Since it does not make any backtracking, the complexity of this algorithm is
polynomial: O(mn2), where n is the number of elements considered and m the
number of constraints that bind them3. We don’t have a proof of correctness
of this greedy algorithm in regards to the general coherence problem but, it
behaved optimally on tested examples. We refer the interested reader to [12]
for full justification and discussion of this algorithm. Traces of execution will be
provided along with the examples in this paper.

2 Note that our expected utility function does not include any probabilities. This re-
flects the case of equiprobability in which the agent has no information about other’s
behavior. Notice that integrating algorithms to progressively learn such probabilities
is an obvious perspective of the presented model.

3 n coherence calculus (sum over m constraints) for each level and a maximum of n
levels to be searched.
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Function. LocalSearch(W )

1: Inputs: W = {P , B, I, SC, C+, C−, A, R}; // current agent state
2: Outputs: List, Change; // ordered list of elements (change(s) to attempt).
3: Global:
4: Local:
5: Float, G, Gval, C, Cval; // Expected utility value of the best move;
6: Elements set, A′, R′;
7: Elements, y, x;
8: Agent, J ; // Agent state buffer
9: Body:

10: for all x ∈ P ∪ B ∪ I ∪ SC do
11: if x ∈ A then
12: A′ := A − {x}; R′ := R ∪ {x};
13: else
14: R′ := R − {x}; A′ := A ∪ {x};
15: end if
16: W ′ := {P , B, I, SC, C+, C−, A′, R′};
17: G := C(W ′) − C(W ) − Res(x); // Expected utility of flipping x
18: C := C(W ′) − C(W ); // Pure coherence gain
19: if G > Gval then
20: J := W ′; y := x; Gval := G; Cval := C;
21: end if
22: end for// Ends when (coherence is not raising anymore and the expected utility

is not positive) or a social commitment need to be changed.
23: if (Cval < 0 and Gval < 0) or y ∈ SC then
24: Return Change;
25: else
26: Update (Res(y)); Add (J ,Change);
27: LocalSearch(J);
28: end if

Fig. 1. Recursive specification of the local search algorithm

2.3 Cognitive Coherence Applied to Agent Communication

Applied to agent communication, the cognitive coherence theory supplies the-
oretical and practical elements for automating agent communication. The cog-
nitive coherence framework provides the necessary mechanisms to answer (even
partially) the following questions which are usually poorly treated in the AI and
MAS literature:

1. Why and when should agents converse? Agents dialogue in order to try
reducing incoherences they cannot reduce alone.

2. When should an agent take a dialogue initiative, on which subject and with
whom? An agent engages in a dialogue when an incoherence appears that
he cannot reduce alone. Whether because it is an external incoherence and
he cannot accept or reject external cognitions on his own, or because it is
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an internal incoherence he fails to reduce alone. The subject of this dialogue
should thus focus on the elements which constitute the incoherence. The
dialogue partners are the other agents involved in the incoherence if it is an
external one or an agent he thinks could help him in the case of a merely
internal incoherence.

3. By which type of dialogue? Even if we gave a general mapping of incoherence
types toward dialogue types using Walton and Krabble typology in [14], the
theory is generic enough to be applied to any conventional communicational
framework. In [15], we gave the procedural scheme for this choice using
DIAGAL [2] dialogue games as primitive dialogue types.

4. How to define and measure the utility of a conversation? As defined in sec-
tion 2.2, the utility of a dialogue is the difference between the incoherence
before and after this dialogue minus the cost of the dialogue moves.

5. When to stop dialogue or, how to pursue it? The dialogue stops when the
incoherence is reduced4 or, either it continues with a structuration according
to the incoherence reductions chain. As dialogues are attempts to reduce
incoherence, expected utility is used to choose between different competing
dialogues moves (including dialogue initiative and dialogue ending).

6. What are the impacts of the dialogue on agents’ private cognitions? In cases
where dialogue, considered as an attempt to reduce an incoherence by work-
ing on the external world, definitively fails, the agent reduces the incoherence
by changing his own mental attitudes in order to recover coherence (this is
the attitude change process to be described in section 3).

7. Which intensity to give to illocutionary forces of dialogue acts? Evidently,
the intensities of the illocutionary forces of dialogue/speech acts generated
are influenced5 by the incoherence magnitude. The more important the in-
coherence magnitude is, the more intense the illocutionary forces are.

8. What are the impacts of the dialogue on agents’ moods? The general scheme
is that: following the coherence principle, coherence is a source of satisfaction
and incoherence is a source of dissatisfaction. We deduce emotional attitudes
from internal coherence dynamic (happiness arises from successful reduction,
sadness from failed attempt of reduction, fear from a future important re-
duction attempt, stress and anxiety from an incoherence persistence,. . . ).

9. What are the consequences of the dialogue on social relations between agents?
Since agents can compute and store dialogue utility, they can build and
modify their relations with other agents in regard to their past dialogues.
For example, they can strengthen relations with agents with whom past
dialogues were useful, . . .

All those dimensions of our theory - except 7, 8 and 9 - have been implemented
and exemplified as presented and discussed in [13] and [15]. The presented
4 Note that this ending criterium is to be tempered with other external factors like

time, resources and social norms. Those resources can be taken into account in the
update of the resistance to change of various discussed elements.

5 Actually, this is not the only factor, other factors could also matter: social role,
hierarchical positions,. . .
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practical framework relies on our dialogue games based agent communication
language (DIAGAL) and our dialogue game simulator toolbox (DGS)[2].

3 Attitude Change and Persuasion

From the set of all private cognitions result attitudes which are positive or nega-
tive psychological dispositions towards a concrete or abstract object or behavior.

For contemporary psychologists, attitudes are the main components of cogni-
tion. These are the subjective preliminary to rational action [6]. Theoretically, an
agent’s behavior is determined by his attitudes. The basic scheme highlighted
by those researches is that beliefs (cognition) and desires (affect) lead to in-
tentions which could lead to actual behaviors or dialogical attempts to get the
corresponding social commitments depending on their nature.

From another point of view, it could happen (due to hierarchies, power rela-
tions, value-based negotiation, argumentation,. . . ) that an agent comes to accept
a counter-attitudinal course of action or proposition. In that case, attitude change
might occur. Since cognitive coherence theory is built over five decades of research
on attitude change in social psychology, it provides a native yet realistic modelling
of the cognitive aspects of persuasion through this concept of attitude change.
Within our characterization of cognitive coherence, attitude change refers to the
change of acceptance states of some private element of cognition in order to restore
coherence with external interdependencies, i.e. social commitments.

4 Argumentation in the Cognitive Coherence Theory

Argumentation has not been introduced in the cognitive coherence approach yet.
However, this extension follows naturally from previous work by saying that ar-
gumentation, explanation and justification are the processes by which an agent
shows to the other agents why his (or a given) position is coherent. In that
context, we do not distinguish between argumentation, explanation and justifi-
cation which all aim to convince in some way. More specifically, the idea behind
argumentation is that agents can construct, exchange and weigh up arguments
relevant to conflicting issues, in the context of an explicit external incoherence.

The argumentation process can be modelled using three steps: (1) argument
generation, (2) argument evaluation and (3) argument integration. The next
sections present and exemplify how cognitive processes associated with those
steps are computed in the cognitive coherence framework.

4.1 Argument Generation

Argumentation is a type of information disclosure. While in cooperative systems
this information might be useful to help solving conflicts, or by making the ne-
gotiation and the convergence to a deal more efficient, it has been shown in [10]
that argumentation and full cooperation is not necessarily always the best strat-
egy for negotiation convergence. More generally, it is unclear if such information
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disclosure is worth in open system where heterogeneous and competitive (even
malicious) agents can use this information to endorse non-cooperative behavior.
In this paper, we won’t address strategic issues related to argumentation.

In our framework, argumentation can be achieved by constraint propagation
by introducing a syntactic facility that will allow the agents to send to one
another parts of their elements and constraints networks. Previous work has been
done around that idea in the field of distributed constraint satisfaction [9,10].

Definition 7 (Argument). An argument for an element acceptance or rejec-
tion is a set of elements (along with their acceptance states and resistances to
change) and constraints (along with their weights) that form a connected com-
ponent in the network of cognitions of the agent. More formally, an argument w
is a pair w = 〈H, h〉 such that:

1. H ⊆ E, h ∈ E; H ∩ {h} = ∅;
2. ∀x, y ∈ H ∪ {h}, ∃z1, ..., zn ∈ H ∪ {h}, (x, z1), ..., (zn, y) ⊆ C (connexity

condition);

H is called the support of the argument while h is the conclusion of the argument.

Definition 8 (Argument types)
ArgX stands for the set of all possible arguments that can be generated from the
agent’s bases included in X. It is useful to differentiate between:

– belief arguments: 〈H, h〉 is a belief argument iff (H ∪ {h}) ⊂ ArgP∪B;
– practical arguments: 〈H, h〉 is a practical argument iff (H ∪{h}) ⊂ ArgP∪B∧

h ∈ I;
– social arguments: 〈H, h〉 is a social argument iff (H ∪ {h}) ⊂ ArgI∪SC ∧

(H ∪ {h}) ∩ SC 
= ∅;

In the cognitive coherence framework, argumentation will be used when an ex-
plicit external incoherence is not solved otherwise (for example by referring to
an authority relation or a social norm). When this precondition will be met,
the agents will disclose the private part of the connected component related to
the discussed issue. Let’s take an example to illustrate this argument generation
systematics and illustrate previous definitions.

Two agents W and J are driving a car (it is a joint activity and the agents
have complementary access to the necessary resources). The car is at a stop and
the agents have to decide which way to go. Suppose that the initial states of
agents W and J are the ones presented by Figure 2. Since W wants to go left
(he has the corresponding intention accepted), he wants the corresponding social
commitment to be accepted (see Figure 3). W will thus make an offer to J6:

W : I would turn left.

6 More precisely, he will propose to enter an offer game (see [2] for details about the
DIAGAL agent language) which is the only game which entry and success conditions
unify with the current and wanted state respectively. Using the current framework
and algorithms this will result automatically from the situation described by Figure 2
as described in [12]. This is what the cognitive coherence framework is made for:
automatizing agent communications.
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Fig. 2. Initial states sW and sJ for W and J . Here, all the resistances to change
are initialized as shown in order to indicate that perceptions are more resistant than
beliefs, that are more resistant than intentions that are more resistant than social
commitments. Other choices may be made.

If agent J also would had wanted to turn left (W ’s proposal would have been
coherent with her views), she would have then accepted the proposal and the
corresponding social commitment would have been accepted:

J : Ok.

However, as depicted by Figure 2 agent J wants to turn right (i.e. the corre-
sponding intention is accepted), W ’s proposal acceptance would entail a loss in
coherence for J (see Figure 3). J will then embed a counter-proposal7 as attempt
to get a result that would be more coherent with her view. Her argument for
this choice (j) will be attached to her proposal:
7 In the form of a DIAGAL request game.
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Fig. 3. Reasoning as computed by the local search algorithm from the initial states
sW and sJ for W and J . Here the perceptions/beliefs that “there is a rugby match”,
“there is a lot of traffic”, “there are a lot of lights”, “traffic is slower” are noted R, T ,
L, S respectively, the intentions to turn left and to turn right are noted LR and RR
respectfully and the social commitments to turn left and right are noted TR and TL.
Rejected elements are noted with a negation sign and only the root of the search tree
indicates the full state of the agent, the others nodes just indicate the change they imply.
Arcs are labelled with the value of the expected utility function (presented section 2.2).
The black path indicates the change(s) returned by the local search algorithm.

J : There ’s a lot of lights on the left road, that will slow us down. Can’t
we turn right instead?

Notice that, this makes the external incoherence explicit for W 8. In order to
complete the argumentation dialogue initiated by J , W will disclose his own
argument (w).

W : Yes, but there is a rugby match today, so there will be a lot of traffic
on the right road, we should avoid going this way and turn left.

During that process, the agents eventually communicate each other the entire
connected component attached to the discussed issues. However, this doesn’t
tell anything about the way they will evaluate and integrate the exchanged
arguments. Next sections discuss and propose a modelling of those dimensions.

4.2 Issues in Argument Evaluation and Integration

Argument evaluation and integration are complex issues, and social psychology
(which has studied that problem on experimental basis for half a century now)
indicates that there is a large number of aspects to be considered [6]. Here is a
simplified listing of those:
8 See [15] and [12] for a discussion about the importance of the explicitation phase of

dialogue that is usually neglected.
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– evaluation of the source: authority, trust, credibility, attractiveness;
– evaluation of the message: comprehension and quality of argument, number

and order of arguments, one- and two-sided messages, confidence, fear;
– characteristics of the audience: intelligence and self-esteem, psychological

reactance, initial attitudes, heterogeneity, sex differences;
– characteristics of the medium: media and channel of communication, media

functions, temporality of the communication.

Furthermore, many studies indicate that the regularities in that area are diffi-
cult to find and that argumentation evaluation and integration are also linked to
cognitive learning and thus depend on the dynamics of the learner [8]. However,
a characterization of rational agent argumentation may not take all of these into
consideration. We thus restrict the discussion to the salient elements that are
already considered in cognitive agent modelling and MAS:

– trust and credibility: the levels of trust and credibility associated with the
protagonist influence the argument evaluation and integration process. The
model presented in [18] (inspired by cognitive coherence approach) has in-
quired this link further. For the sake of simplicity, in this paper, we will
consider that the levels of trust and credibility are the highest possible;

– initial attitude toward the standpoint defended by the argument : it is clear
that the initial attitude of the antagonist agent will intervene in argument
evaluation and integration especially in conjunction with trust and credibil-
ity. Social psychology, in particular the theory of social judgment [19], showed
that each agent maintains some acceptability intervals in which arguments
may be taken into account while arguments falling out of those intervals
will be considered too extreme and won’t be taken into account. However,
because we model rational agents that usually operate in quite precise and
well known domains, we will make the assumption that all arguments will
be considered;

– initial attitude toward the protagonist of the argument : this issue is related
to the level of trust and cooperativeness that the antagonist shows toward
the protagonist. Will the agents integrate the other’s point of view in their
own cognitive model and act accordingly (which would be very cooperative)
or will they compare their point of view with the other’s and then substitute
those two if their is weaker or reject the other’s one if it is (subjectively)
evaluated as weaker? In this paper, we make the assumption that the agents
will fully integrate the other argument in their mental states;

– Heterogeneity of the participants : we call objective evaluation the case where
all the participants share the same evaluation function and we name subjective
evaluation the case in which they all have their own. This aspect depends on
the type of system addressed. While objective evaluation might be possible
in cooperative systems, open system where agents may be heterogeneous will
most probably rest on subjective evaluation. In this paper, we will make the
assumption that the agents share the same evaluation function to be described.

– number and quality of arguments: in this paper, we will focus on cognitive
factors which will tend to reduce argument evaluation to this last category.
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4.3 Argument Evaluation

Argument evaluation will be done by comparing (using a shared measure) the
strengths of the arguments provided by both sides in order to decide whose stand-
point will be chosen as the more rational one. We use the following argument
evaluation measure:

Definition 9 (Strength of an argument)
The strength of a given argument 〈H, h〉 is the sum of the weights of the satisfied
constraints minus the sum of the weights of the non-satisfied ones. Formally:

Strengh(〈H, h〉) = 2 ∗
∑

(x,y)∈Sat(H∪h)

Weight(x, y) −
∑

(x,y)∈Con(H∪h)

Weight(x, y)

The issue of the dispute will depend fully on the comparison between the strength
of the considered arguments. In our example, that means that because the
strength of W ’s argument (Weight(w) = 4.2) for going through the left road
is stronger than the strength of J ’s argument (Weight(j) = 4) for going by
the right road, J will concede. The social commitment proposed by W will be
accepted and the one advocated by J rejected.

J : Ok, we will go through the left way.9

4.4 Argument Integration

Here, we make the hypothesis that each agent fully integrates the other’s point
of view in his own cognitive coherence calculus. This means that the perceptions
and beliefs as well as goals and social commitments supporting the other’s point
of view are integrated in the cognitive model of the agent regardless to their
strength. This corresponds to a fully cooperative and trustful cognitive behav-
ior. Many other integration strategies are possible and will be discussed and
compared as part of our future work.

Cooperation in cognitive coherence theory results from the fact that once an
agent is aware (even partially) about the other’s cognitive constraints, he will
be able to take them into account in his own coherence seeking. This argument
integration procedure is fully cooperative since the others’ arguments will be
fully taken into account in future reasoning. In the current model integration is
done after the argument evaluation, thus being a post-evaluation memorization
of arguments. Note that different choices may have been possible that will be
inquired in future work.

In our example, argument evaluation and integration result in the cognitive
models depicted by Figure 4. While W cannot improve his cognitive coherence
anymore, Figure 5 shows J ’s reasoning which embeds an attitude change. Fig-
ure 6 presents the final state of the agents which is an equilibrium (no element

9 Concretely, this means that J ’s embedded request will be refused by W and W ’s
offer finally accepted by J . All the opened games will thus be closed.
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Fig. 4. W and J states after their argumentation dialogue

acceptance change can improve cognitive coherence). Notice that the agent co-
herence is not maximal (i.e. 1) because of the integration of J ’s argument which
is against the chosen issue (and is valuable).

Finally, it is probable that W will turn left in order to fulfill the corresponding
social commitment and advance the state of the environment. . .

5 Coverage of the Presented Approach

Our approach allows to cover a variety of argumentation dialogues. For example,
argumentations that rely on element types (cognitions types and their related
resistance to change). For example, the following dialogue involves perception as
an argument:

W : Google can answer a request in less than 2 seconds and gives you
pertinent pages out of several millions ones.
J : No!
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Fig. 5. J ’s reasoning from the state s′
J , resulting from the argumentation dialogue.

Notice the attitude change.

Fig. 6. Final states (after integration) for W and J



208 P. Pasquier et al.

W : Yes.
J : How do you know?
W : I have seen it.

Also, while social arguments have not been considered in the literature yet, we
think they are crucial in multi-agents settings. Here is an example, that can be
captured by our approach, where J justifies his decision using a social argument:

Q: Do you want to go to the cinema tonight?
J : No, I can’t.
Q: Why?
J : I promised my boss to finish a paper tonight.

More generally, the treatment of the cognitive aspects of pragmatics models
the persuasion process that allow to capture a variety of persuasive dialogues
including those that do not involve argumentation. Here is an example of such
dialogue:

Boss: You have to finish that paper tonight.
J : Yes.

In DIAGAL [2], an order given by an agent that has authority over his inter-
locutor results in a social commitment being accepted by definition. However,
J ’s behavior will still be guided by his coherence calculus and J will either enter
an attitude change and accept the corresponding intention or cancel or violate
this social commitment while coping the sanctions (which are taken into ac-
count in the agent reasoning through the resistance to change of the accepted
commitment).

This shows how our approach integrates argumentation with other agent com-
munication behavior through the modelling of the cognitive aspect of pragmat-
ics that emphasizes the persuasive dimension of every communication. The limit
case of argumentation dialogue being the one in which each argument consists of
a single element, our approach can be seen as an attempt to unify argumentation-
based frameworks with previous agent communication frameworks (specifically
social commitment based communication) through some higher level concepts
from cognitive sciences.

6 Conclusion

In this paper, we have highlighted the persuasive aspects inherent to every com-
munication (thus including argumentation) by providing a model in which the
cognitive response to persuasive message was modelled (by reifying the concept
of attitude change when necessary). The strength of the proposed approach re-
sides in the facts that: (1) all the steps of argumentation are computed using a
single set of measures, i.e. the cognitive coherence metrics, (2) the approach is
grounded in behavioral cognitive sciences rather than in dialectics and is part of
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a more general theory of mind, which covers many dimensions of the cognitive
aspects of pragmatics and (3) our characterization is computational.

The presented framework has been developed in order to fill the need (that
is not covered by previous approaches) of implementable argumentation based
frameworks that are integrated to a more general agent architecture and com-
munication framework. While promising, this alternative approach to argumen-
tation requires more work. In particular, studying how this framework differs
from and complements previous (dialectic based) proposals is in our future work
list.
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